strabo-text-recognition-deep-learning | The goal of this project is to detect and recognize | Computer Vision library

 by   spatial-computing C++ Version: v0.67 License: Apache-2.0

kandi X-RAY | strabo-text-recognition-deep-learning Summary

kandi X-RAY | strabo-text-recognition-deep-learning Summary

strabo-text-recognition-deep-learning is a C++ library typically used in Artificial Intelligence, Computer Vision applications. strabo-text-recognition-deep-learning has no bugs, it has no vulnerabilities, it has a Permissive License and it has low support. You can download it from GitHub.

The goal of this project is to detect and recognize the text in the maps. Input to the system is an image (jpeg or png). The output is a geo json image which contains the coordinates of the text in the map along with the recognized text in that area. This document contains the installation and testing guide for Strabo.
Support
    Quality
      Security
        License
          Reuse

            kandi-support Support

              strabo-text-recognition-deep-learning has a low active ecosystem.
              It has 6 star(s) with 7 fork(s). There are 17 watchers for this library.
              OutlinedDot
              It had no major release in the last 12 months.
              There are 2 open issues and 0 have been closed. There are no pull requests.
              It has a neutral sentiment in the developer community.
              The latest version of strabo-text-recognition-deep-learning is v0.67

            kandi-Quality Quality

              strabo-text-recognition-deep-learning has 0 bugs and 0 code smells.

            kandi-Security Security

              strabo-text-recognition-deep-learning has no vulnerabilities reported, and its dependent libraries have no vulnerabilities reported.
              strabo-text-recognition-deep-learning code analysis shows 0 unresolved vulnerabilities.
              There are 0 security hotspots that need review.

            kandi-License License

              strabo-text-recognition-deep-learning is licensed under the Apache-2.0 License. This license is Permissive.
              Permissive licenses have the least restrictions, and you can use them in most projects.

            kandi-Reuse Reuse

              strabo-text-recognition-deep-learning releases are available to install and integrate.
              Installation instructions, examples and code snippets are available.
              It has 2990 lines of code, 137 functions and 29 files.
              It has high code complexity. Code complexity directly impacts maintainability of the code.

            Top functions reviewed by kandi - BETA

            kandi's functional review helps you automatically verify the functionalities of the libraries and avoid rework.
            Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of strabo-text-recognition-deep-learning
            Get all kandi verified functions for this library.

            strabo-text-recognition-deep-learning Key Features

            No Key Features are available at this moment for strabo-text-recognition-deep-learning.

            strabo-text-recognition-deep-learning Examples and Code Snippets

            strabo-text-recognition-deep-learning Version 0.67,II. Test with demo images
            C++dot img1Lines of Code : 34dot img1License : Permissive (Apache-2.0)
            copy iconCopy
            cd strabo-text-recognition-deep-learning
            python3 run_command_line.py --checkpoint-path /east_icdar2015_resnet_v1_50_rbox --image 1920-5.png --config configuration.ini
            
            defaultdict(, {'result_path': 'static/results/test2'})
            image name is 1920-5.png
            ma  
            1.2 Customized installation
            C++dot img2Lines of Code : 27dot img2License : Permissive (Apache-2.0)
            copy iconCopy
            sudo apt-get install virtualenv
            
            mkdir ~/Environments
            cd ~/Environments
            
            virtualenv -p python3 strabo_env
            
            source strabo_env/bin/activate
            
            (strabo_env) zekun@zekun-ThinkPad-P50:~/Environments$
            
            cd 
            
            sudo apt-get install unzip
            
            unzip StraboDependency.  
            Library Requirement
            C++dot img3Lines of Code : 14dot img3License : Permissive (Apache-2.0)
            copy iconCopy
            opencv-python==4.0.0.21
            tensorflow==1.4
            Shapely==1.5.17
            Flask==1.0.2
            matplotlib==3.0.3
            scipy==0.19.0
            plumbum==1.6.7
            numpy==1.14.3
            ipython==6.3.0
            Pillow==5.2.0
            
            tesseract-ocr==4.0.* 
            libtesseract-dev==4.0.* 
            libleptonica-dev==1.76.*  
              

            Community Discussions

            QUESTION

            Image similarity in swift
            Asked 2022-Mar-25 at 11:42

            The swift vision similarity feature is able to assign a number to the variance between 2 images. Where 0 variance between the images, means the images are the same. As the number increases this that there is more and more variance between the images.

            What I am trying to do is turn this into a percentage of similarity. So one image is for example 80% similar to the other image. Any ideas how I could arrange the logic to accomplish this:

            ...

            ANSWER

            Answered 2022-Mar-25 at 10:26

            It depends on how you want to scale it. If you just want the percentage you could just use Float.greatestFiniteMagnitude as the maximum value.

            Source https://stackoverflow.com/questions/71615277

            QUESTION

            When using pandas_profiling: "ModuleNotFoundError: No module named 'visions.application'"
            Asked 2022-Mar-22 at 13:26
            import numpy as np
            import pandas as pd
            from pandas_profiling import ProfileReport
            
            ...

            ANSWER

            Answered 2022-Mar-22 at 13:26

            It appears that the 'visions.application' module was available in v0.7.1

            https://github.com/dylan-profiler/visions/tree/v0.7.1/src/visions

            But it's no longer available in v0.7.2

            https://github.com/dylan-profiler/visions/tree/v0.7.2/src/visions

            It also appears that the pandas_profiling project has been updated, the file summary.py no longer tries to do this import.

            In summary: use visions version v0.7.1 or upgrade pandas_profiling.

            Source https://stackoverflow.com/questions/71568414

            QUESTION

            Classify handwritten text using Google Cloud Vision
            Asked 2022-Mar-01 at 00:36

            I'm exploring Google Cloud Vision to detect handwriting in text. I see that the model is quite accurate in read handwritten text.

            I'm following this guide: https://cloud.google.com/vision/docs/handwriting

            Here is my question: is there a way to discover in the responses if the text is handwritten or typed?

            A parameter or something in the response useful to classify images?

            Here is the request:

            ...

            ANSWER

            Answered 2022-Mar-01 at 00:36

            It seems that there's already an open discussion with the Google team to get this Feature Request addressed:

            https://issuetracker.google.com/154156890

            I would recommend you to comment on the Public issue tracker and indicate that "you are affected to this issue" to gain visibility and push for get this change done.

            Other that that I'm unsure is that can be implemented locally.

            Source https://stackoverflow.com/questions/71296897

            QUESTION

            cv2 findChessboardCorners does not detect corners
            Asked 2022-Jan-29 at 23:59

            I want to try out this tutorial and therefore used the code from here in order to calibrate my camera. I use this image:

            The only thing I adapted was chessboard_size = (14,9) so that it matches the corners of my image. I don't know what I do wrong. I tried multiple chessboard pattern and cameras but still cv2.findChessboardCorners always fails detecting corners. Any help would be highly appreciated.

            ...

            ANSWER

            Answered 2022-Jan-29 at 23:59

            Finally I could do it. I had to set chessboard_size = (12,7) then it worked. I had to count the internal number of horizontal and vertical corners.

            Source https://stackoverflow.com/questions/70907902

            QUESTION

            Fastest way to get the RGB average inside of a non-rectangular contour in the CMSampleBuffer
            Asked 2022-Jan-26 at 02:12

            I am trying to get the RGB average inside of a non-rectangular multi-edge (closed) contour generated over a face landmark region in the frame (think of it as a face contour) from AVCaptureVideoDataOutput. I currently have the following code,

            ...

            ANSWER

            Answered 2022-Jan-26 at 02:12

            If you could make all pixels outside of the contour transparent then you could use CIKmeans filter with inputCount equal 1 and the inputExtent set to the extent of the frame to get the average color of the area inside the contour (the output of the filter will contain 1-pixel image and the color of the pixel is what you are looking for).

            Now, to make all pixels transparent outside of the contour, you could do something like this:

            1. Create a mask image but setting all pixels inside the contour white and black outside (set background to black and fill the path with white).
            2. Use CIBlendWithMask filter where:
              • inputBackgroundImage is a fully transparent (clear) image
              • inputImage is the original frame
              • inputMaskImage is the mask you created above

            The output of that filter will give you the image with all pixels outside the contour fully transparent. And now you can use the CIKMeans filter with it as described at the beginning.

            BTW, if you want to play with every single of the 230 filters out there check this app out: https://apps.apple.com/us/app/filter-magic/id1594986951

            UPDATE:

            CIFilters can only work with CIImages. So the mask image has to be a CIImage as well. One way to do that is to create a CGImage from CAShapeLayer containing the mask and then create CIImage out of it. Here is how the code could look like:

            Source https://stackoverflow.com/questions/70344336

            QUESTION

            UIViewController can't override method from it's superclass
            Asked 2022-Jan-21 at 19:37

            I am actually experimenting with the Vision Framework. I have simply an UIImageView in my Storyboard and my class is from type UIViewController. But when I try to override viewDidAppear(_ animated: Bool) I get the error message: Method does not override any method from its superclass Do anyone know what the issue is? Couldn't find anything that works for me...

            ...

            ANSWER

            Answered 2022-Jan-21 at 19:37

            This is my complete code:

            Source https://stackoverflow.com/questions/70804364

            QUESTION

            X and Y-axis swapped in Vision Framework Swift
            Asked 2021-Dec-23 at 14:33

            I'm using Vision Framework to detecting faces with iPhone's front camera. My code looks like

            ...

            ANSWER

            Answered 2021-Dec-23 at 14:33

            For some reason, remove

            Source https://stackoverflow.com/questions/70463081

            QUESTION

            Swift's Vision framework not recognizing Japanese characters
            Asked 2021-Oct-12 at 23:37

            I would like to read Japanese characters from a scanned image using swift's Vision framework. However, when I attempt to set the recognition language of VNRecognizeTextRequest to Japanese using

            request.recognitionLanguages = ["ja", "en"]

            the output of my program becomes nonsensical roman letters. For each image of japanese text there is unexpected recognized text output. However, when set to other languages such as Chinese or German the text output is as expected. What could be causing the unexpected output seemingly peculiar to Japanese?

            I am building from the github project here.

            ...

            ANSWER

            Answered 2021-Oct-12 at 23:37

            As they said in WWDC 2019 video, Text Recognition in Vision Framework:

            First, a prerequisite, you need to check the languages that are supported by language-based correction...

            Look at supportedRecognitionLanguages for VNRecognizeTextRequestRevision2 for “accurate” recognition, and it would appear that the supported languages are:

            Source https://stackoverflow.com/questions/69546997

            QUESTION

            Boxing large objects in image containing both large and small objects of similar color and in high density from a picture
            Asked 2021-Oct-12 at 10:58

            For my research project I'm trying to distinguish between hydra plant (the larger amoeba looking oranges things) and their brine shrimp feed (the smaller orange specks) so that we can automate the cleaning of petri dishes using a pipetting machine. An example of a snap image from the machine of the petri dish looks like so:

            I have so far applied a circle mask and an orange color space mask to create a cleaned up image so that it's mostly just the shrimp and hydra.

            There is some residual light artifacts left in the filtered image, but I have to bite the cost or else I lose the resolution of the very thin hydra such as in the top left of the original image.

            I was hoping to box and label the larger hydra plants but couldn't find much applicable literature for differentiating between large and small objects of similar attributes in an image, to achieve my goal.

            I don't want to approach this using ML because I don't have the manpower or a large enough dataset to make a good training set, so I would truly appreciate some easier vision processing tools. I can afford to lose out on the skinny hydra, just if I can know of a simpler way to identify the more turgid, healthy hydra from the already cleaned up image that would be great.

            I have seen some content about using openCV findCountours? Am I on the right track?

            Attached is the code I have so you know what datatypes I'm working with.

            ...

            ANSWER

            Answered 2021-Oct-12 at 10:58

            You are on the right track, but I have to be honest. Without DeepLearning you will get good results but not perfect.

            That's what I managed to get using contours:

            Code:

            Source https://stackoverflow.com/questions/69503515

            QUESTION

            Create a LabVIEW IMAQ image from a binary buffer/file with and without NI Vision
            Asked 2021-Sep-30 at 13:54

            Assume you have a binary buffer or file which represents a 2-dimensional image.

            How can you convert the binary data into a IMAQ image for further processing using LabVIEW?

            ...

            ANSWER

            Answered 2021-Sep-30 at 13:54
            With NI Vision

            For LabVIEW users who have the NI vision library installed, there are VIs that allow for the image data of an IMAQ image to be copied from a 2D array.

            For single-channel images (U8, U16, I16, float) the VI is

            Vision and Motion >> Vision Utilites >> Pixel Manipulation >> IMAQ ArrayToImage.vi

            For multichannel images (RGB etc) the VI is

            Vision and Motion >> Vision Utilites >> Color Utilities >> IMAQ ArrayColorToImage.vi

            Example 1

            An example of using the IMAQ ArrayToImage.vi is shown in the snippet below where U16 data is read from a binary file and written to a Greyscale U16 type IMAQ image. Please note, if the file has been created by other software than LabVIEW then it is likely that it will have to be read in little-endian format which is specified for the Read From Binary File.vi

            Example 2

            A similar process can be used when some driver DLL call is used to get the image data as a buffer. For example, if the driver has a function capture(unsigned short * buffer) then the following technique could be employed where a correctly sized array is initialized before the function call using the initialize array primitive.

            Source https://stackoverflow.com/questions/69380393

            Community Discussions, Code Snippets contain sources that include Stack Exchange Network

            Vulnerabilities

            No vulnerabilities reported

            Install strabo-text-recognition-deep-learning

            Here is the instruction for installing Strabo. The following commands have been tested on Linux system with Ubuntu 16.04.2 LTS distribution. You should first download the install.sh from here and StraboDependency.zip from here (Google Drive). You do NOT need to clone this repo mannually to use Strabo. This operation is included in the installation steps. There are two methods to install Strabo (1.1 and 1.2), you can choose the one you prefer. 1.1 provides a user-friendly version of one-line-installation. 1.2 gives the step-to-step instructions. These two methods are essentially the same, you only need one of them (no need for running both).
            We provide a install.sh file for your convinience if you want one-line-installation instead of following the commands below. You can simply type sh install.sh and it will install Strabo automatically. (PS: virtual environment installation is not included in the install.sh file). When you use this install.sh file, please make sure it is in the same folder as StraboDependency.zip. Strabo will be installed in the same folder that your install.sh and StraboDependency.zip reside in.
            If you want to run Strabo inside virtual environment, and you do not have the virtualenv installed, step 1 will help you with that. If you do not want to use virtual environment or have it already installed, you can go to step 2 directly. Download and install virtualenv. Create the directory to store all the environments. Create a new virtual environment and name it strabo_env. Bring up the virtual environment. Then you’ll see "(strabo_env)" ahead of the prompt, which indicates that the strabo_env is up. We have provided a zip file that contains necessary dependency files. We need to extract the zip file in this step. First go to the directory where the zip file resides in with the cd command. We will refer to this directory as <Strabo_Dep_DIR>. If you don't have unzip installed, then install unzip via. Then extract the files by. You should see the following output in the command line. Install python3-dev and other softwares. Install library for Shapely. Install other required libraries. This step will take some time. Then download and install the core code for text detection and recognition. If you want to save the configurations and use it on other machines later, you can run the following commandline and save the configurations into the require- ments.txt file.

            Support

            For any new features, suggestions and bugs create an issue on GitHub. If you have any questions check and ask questions on community page Stack Overflow .
            Find more information at:

            Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items

            Find more libraries
            CLONE
          • HTTPS

            https://github.com/spatial-computing/strabo-text-recognition-deep-learning.git

          • CLI

            gh repo clone spatial-computing/strabo-text-recognition-deep-learning

          • sshUrl

            git@github.com:spatial-computing/strabo-text-recognition-deep-learning.git

          • Stay Updated

            Subscribe to our newsletter for trending solutions and developer bootcamps

            Agree to Sign up and Terms & Conditions

            Share this Page

            share link