rocket-recycling | Rocket-recycling with Reinforcement | Reinforcement Learning library
kandi X-RAY | rocket-recycling Summary
kandi X-RAY | rocket-recycling Summary
As a big fan of SpaceX, I always dreamed of having my own rockets. Recently, I worked on an interesting question that whether we can "build" a virtual rocket and address a challenging problem - rocket recycling, with simple reinforcement learning. I tried on two tasks: hovering and landing. The rocket is simplified into a rigid body on a 2D plane. I considered the basic cylinder dynamics model and assumed the air resistance is proportional to the velocity. A thrust-vectoring engine is installed at the bottom of the rocket. This engine provides adjustable thrust values (0.2g, 1.0g, and 2.0g) with different directions. An angular velocity constraint is added to the nozzle with a max-rotating speed of 30 degrees/second. With the above basic settings, the action space is defined as a collection of the discrete control signals of the engine, including the thrust acceleration and the angular velocity of the nozzle. The state-space consists of the rocket position, speed, angle, angle velocity, nozzle angle, and the simulation time. For the landing task, I followed the basic parameters of the Starship SN10 belly flop maneuver. The initial speed is set to -50m/s. The rocket orientation is set to 90 degrees (horizontally). The landing burn height is set to 500 meters above the ground. The reward functions are quite straightforward. For the hovering tasks: the step-reward is given based on two rules: 1) The distance between the rocket and the predefined target point - the closer they are, the larger reward will be assigned. 2) The angle of the rocket body (the rocket should stay as upright as possible). For the landing task: we look at the Speed and angle at the moment of contact with the ground - when the touching-speed are smaller than a safe threshold and the angle is close to 0 degrees (upright), we see it as a successful landing and a big reward will be assigned. The rest of the rules are the same as the hovering task. I implement the above environment and train a policy-based agent (actor-critic) to solve this problem. The episode reward finally converges very well after over 20000 training episodes. Despite the simple setting of the environment and the reward, the agent has learned the belly flop maneuver nicely. The following animation shows a comparison between the real SN10 and a fake one learned from reinforcement learning.
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of rocket-recycling
rocket-recycling Key Features
rocket-recycling Examples and Code Snippets
Community Discussions
Trending Discussions on Reinforcement Learning
QUESTION
I want to compile my DQN Agent but I get error:
AttributeError: 'Adam' object has no attribute '_name'
,
ANSWER
Answered 2022-Apr-16 at 15:05Your error came from importing Adam
with from keras.optimizer_v1 import Adam
, You can solve your problem with tf.keras.optimizers.Adam
from TensorFlow >= v2
like below:
(The lr
argument is deprecated, it's better to use learning_rate
instead.)
QUESTION
I'm having a hard time wrapping my head around what and when vectorized environments should be used. If you can provide an example of a use case, that would be great.
Documentation of vectorized environments in SB3: https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html
...ANSWER
Answered 2022-Mar-25 at 10:37Vectorized Environments are a method for stacking multiple independent environments into a single environment. Instead of executing and training an agent on 1 environment per step, it allows to train the agent on multiple environments per step.
Usually you also want these environment to have different seeds, in order to gain more diverse experience. This is very useful to speed up training.
I think they are called "vectorized" since each training step the agent observes multiple states (inserted in a vector), outputs multiple actions (one for each environment), which are inserted in a vector, and receives multiple rewards. Hence the "vectorized" term
QUESTION
I'm learning about policy gradients and I'm having hard time understanding how does the gradient passes through a random operation. From here: It is not possible to directly backpropagate through random samples. However, there are two main methods for creating surrogate functions that can be backpropagated through
.
They have an example of the score function
:
ANSWER
Answered 2021-Nov-30 at 05:48It is indeed true that sampling is not a differentiable operation per se. However, there exist two (broad) ways to mitigate this - [1] The REINFORCE way and [2] The reparameterization way. Since your example is related to [1], I will stick my answer to REINFORCE.
What REINFORCE does is it entirely gets rid of sampling operation in the computation graph. However, the sampling operation remains outside the graph. So, your statement
.. how does the gradient passes through a random operation ..
isn't correct. It does not pass through any random operation. Let's see your example
QUESTION
What is the connection between discount factor gamma and horizon in RL.
What I have learned so far is that the horizon is the agent`s time to live. Intuitively, agents with finite horizon will choose actions differently than if it has to live forever. In the latter case, the agent will try to maximize all the expected rewards it may get far in the future.
But the idea of the discount factor is also the same. Are the values of gamma near zero makes the horizon finite?
...ANSWER
Answered 2022-Mar-13 at 17:50Horizon refers to how many steps into the future the agent cares about the reward it can receive, which is a little different from the agent's time to live. In general, you could potentially define any arbitrary horizon you want as the objective. You could define a 10 step horizon, in which the agent makes a decision that will enable it to maximize the reward it will receive in the next 10 time steps. Or we could choose a 100, or 1000, or n step horizon!
Usually, the n-step horizon is defined using n = 1 / (1-gamma). Therefore, 10 step horizon will be achieved using gamma = 0.9, while 100 step horizon can be achieved with gamma = 0.99
Therefore, any value of gamma less than 1 imply that the horizon is finite.
QUESTION
I am trying to set a Deep-Q-Learning agent with a custom environment in OpenAI Gym. I have 4 continuous state variables with individual limits and 3 integer action variables with individual limits.
Here is the code:
...ANSWER
Answered 2021-Dec-23 at 11:19As we talked about in the comments, it seems that the Keras-rl library is no longer supported (the last update in the repository was in 2019), so it's possible that everything is inside Keras now. I take a look at Keras documentation and there are no high-level functions to build a reinforcement learning model, but is possible to use lower-level functions to this.
- Here is an example of how to use Deep Q-Learning with Keras: link
Another solution may be to downgrade to Tensorflow 1.0 as it seems the compatibility problem occurs due to some changes in version 2.0. I didn't test, but maybe the Keras-rl + Tensorflow 1.0 may work.
There is also a branch of Keras-rl to support Tensorflow 2.0, the repository is archived, but there is a chance that it will work for you
QUESTION
Environment:
- Python: 3.9
- OS: Windows 10
When I try to create the ten armed bandits environment using the following code the error is thrown not sure of the reason.
...ANSWER
Answered 2022-Feb-08 at 08:01It could be a problem with your Python version: k-armed-bandits library was made 4 years ago, when Python 3.9 didn't exist. Besides this, the configuration files in the repo indicates that the Python version is 2.7 (not 3.9).
If you create an environment with Python 2.7 and follow the setup instructions it works correctly on Windows:
QUESTION
I have two different problems occurs at the same time.
I am having dimensionality problems with MaxPooling2d and having same dimensionality problem with DQNAgent.
The thing is, I can fix them seperately but cannot at the same time.
First Problem
I am trying to build a CNN network with several layers. After I build my model, when I try to run it, it gives me an error.
...ANSWER
Answered 2022-Feb-01 at 07:31Issue is with input_shape. input_shape=input_shape[1:]
Working sample code
QUESTION
I have this custom callback to log the reward in my custom vectorized environment, but the reward appears in console as always [0] and is not logged in tensorboard at all
...ANSWER
Answered 2021-Dec-25 at 01:10You need to add [0]
as indexing,
so where you wrote self.logger.record('reward', self.training_env.get_attr('total_reward'))
you just need to index with self.logger.record('reward', self.training_env.get_attr ('total_reward')[0]
)
QUESTION
I followed a PyTorch tutorial to learn reinforcement learning(TRAIN A MARIO-PLAYING RL AGENT) but I am confused about the following code:
...ANSWER
Answered 2021-Dec-23 at 11:07Essentially, what happens here is that the output of the net is being sliced to get the desired part of the Q table.
The (somewhat confusing) index of [np.arange(0, self.batch_size), action]
indexes each axis. So, for axis with index 1, we pick the item indicated by action
. For index 0, we pick all items between 0 and self.batch_size
.
If self.batch_size
is the same as the length of dimension 0 of this array, then this slice can be simplified to [:, action]
which is probably more familiar to most users.
QUESTION
I'm trying to implement a DQN. As a warm up I want to solve CartPole-v0 with a MLP consisting of two hidden layers along with input and output layers. The input is a 4 element array [cart position, cart velocity, pole angle, pole angular velocity] and output is an action value for each action (left or right). I am not exactly implementing a DQN from the "Playing Atari with DRL" paper (no frame stacking for inputs etc). I also made a few non standard choices like putting done
and the target network prediction of action value in the experience replay, but those choices shouldn't affect learning.
In any case I'm having a lot of trouble getting the thing to work. No matter how long I train the agent it keeps predicting a higher value for one action over another, for example Q(s, Right)> Q(s, Left) for all states s. Below is my learning code, my network definition, and some results I get from training
...ANSWER
Answered 2021-Dec-19 at 16:09There was nothing wrong with the network definition. It turns out the learning rate was too high and reducing it 0.00025 (as in the original Nature paper introducing the DQN) led to an agent which can solve CartPole-v0.
That said, the learning algorithm was incorrect. In particular I was using the wrong target action-value predictions. Note the algorithm laid out above does not use the most recent version of the target network to make predictions. This leads to poor results as training progresses because the agent is learning based on stale target data. The way to fix this is to just put (s, a, r, s', done)
into the replay memory and then make target predictions using the most up to date version of the target network when sampling a mini batch. See the code below for an updated learning loop.
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install rocket-recycling
You can use rocket-recycling like any standard Python library. You will need to make sure that you have a development environment consisting of a Python distribution including header files, a compiler, pip, and git installed. Make sure that your pip, setuptools, and wheel are up to date. When using pip it is generally recommended to install packages in a virtual environment to avoid changes to the system.
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page