The use case of AI Course Recommender System is to provide personalized recommendation to the user based on their interest, course they can take and their current knowledge. This system will be able to recommend course based on user’s interest, current knowledge, analytical view of students’ performance in mathematics and recommends if a student can consider math subject for his/ her higher education. The recommended course will be based on the information of user’s profile, analysis of grades of students, visualization of patterns, prediction of grade in final test, and some rules that were set by their instructor. Using machine learning algorithms, we can train our model on a set of data and then predict the ratings for new items. This is all done in Python using numpy, pandas, matplotlib, scikit-learn and seaborn. kandi kit provides you with a fully deployable AI Course Recommender System. Source code included so that you can customize it for your requirement.
Deployment Information
The entire solution is available as a package to download and install from the source code repository. Follow below instructions to download and deploy the solution. 1. Navigate to the repository by clicking the component under Kit Solution Source section 2. Clone the repository 3. Locate requirements.txt file to find all the dependencies 4. Run the command 'pip install -r requirements.txt' to install all the dependencies 5. Open the Jupyter Notebook from the package as entire solution is available in the form of Jupyter Notebook 6. Execute all the cells in Jupyter Notebook If there're any challenges while installing dependencies, run the command below to upgrade pip and try again. python -m pip install --upgrade pip
Development Environment
VSCode and Jupyter Notebook are used for development and debugging. Jupyter Notebook is a web based interactive environment often used for experiments, whereas VSCode is used to get a typical experience of IDE for developers.
notebookby jupyter
Jupyter Interactive Notebook
notebookby jupyter
Jupyter Notebook
10204
Version:v7.0.0b4
License: Permissive (BSD-3-Clause)
Data Mining
Our solution integrates data from various sources, and we have used below libraries for exploring patterns in these data and understanding correlation between the features.
numpyby numpy
The fundamental package for scientific computing with Python.
numpyby numpy
Python
23755
Version:v1.25.0rc1
License: Permissive (BSD-3-Clause)
pandasby pandas-dev
Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more
pandasby pandas-dev
Python
38689
Version:v2.0.2
License: Permissive (BSD-3-Clause)
Data Visualisation
The patterns and relationships are identified by representing data visually and below libraries are used.
matplotlibby matplotlib
matplotlib: plotting with Python
matplotlibby matplotlib
Python
17559
Version:v3.7.1
License: No License
seabornby mwaskom
Statistical data visualization in Python
seabornby mwaskom
Python
10797
Version:v0.12.2
License: Permissive (BSD-3-Clause)
Machine learning
Below libraries and model collections helps to create the machine learning models for the core prediction of use case in our solution.
scikit-learnby scikit-learn
scikit-learn: machine learning in Python
scikit-learnby scikit-learn
Python
54584
Version:1.2.2
License: Permissive (BSD-3-Clause)
tensorflowby tensorflow
An Open Source Machine Learning Framework for Everyone
tensorflowby tensorflow
C++
175562
Version:v2.13.0-rc1
License: Permissive (Apache-2.0)
pytorchby pytorch
Tensors and Dynamic neural networks in Python with strong GPU acceleration
pytorchby pytorch
Python
67874
Version:v2.0.1
License: Others (Non-SPDX)
Kit Solution Source
student-grade-analyticsby balaji-munusamy
Analyse academic and non-academic information of students and predict grades
student-grade-analyticsby balaji-munusamy
Jupyter Notebook
0
Version:Current
License: Permissive (Apache-2.0)