Scikit-learn (Sklearn) is the most useful and robust library for machine learning in Python. It provides a selection of efficient tools for machine learning and statistical modeling including classification, regression, clustering, and dimensionality reduction via a consistence interface in Python.
Classification
In Classification, the output variable must be a discrete value. The task of the classification algorithm is to map the input value(x) with the discrete output variable(y).
Python 5400 Version:Current
Python 5400 Version:Current License: Permissive (Apache-2.0)
Python 4087 Version:Current
Python 4087 Version:Current License: Permissive (MIT)
Python 1543 Version:Current
Python 1543 Version:Current License: Permissive (MIT)
Regression
In Regression, the output variable must be of continuous nature or real value. The task of the regression algorithm is to map the input value (x) with the continuous output variable(y).
JavaScript 786 Version:Current
JavaScript 786 Version:Current License: Permissive (MIT)
JavaScript 310 Version:Current
JavaScript 310 Version:Current License: Permissive (MIT)
Shell 363 Version:4.9.0
Shell 363 Version:4.9.0 License: Permissive (Apache-2.0)
Clustering
A way of grouping the data points into different clusters, consisting of similar data points. The objects with the possible similarities remain in a group that has less or no similarities with another group.
Java 423 Version:2020.12.0
Java 423 Version:2020.12.0 License: Strong Copyleft (GPL-3.0)
Python 177 Version:Current
Python 177 Version:Current License: Permissive (MIT)
Python 117 Version:Current
Python 117 Version:Current License: Permissive (MIT)
Dimensionality reduction
It is a way of converting the higher dimensions dataset into lesser dimensions dataset ensuring that it provides similar information.
Jupyter Notebook 2061 Version:Current
Jupyter Notebook 2061 Version:Current License: Strong Copyleft (GPL-3.0)
Python 505 Version:0.4.4
Python 505 Version:0.4.4 License: Weak Copyleft (LGPL-3.0)
Jupyter Notebook 260 Version:Current
Jupyter Notebook 260 Version:Current License: Permissive (MIT)
Model selection
Model selection is the process of selecting one final machine learning model from among a collection of candidate machine learning models for a training dataset.
Python 3868 Version:1.5
Python 3868 Version:1.5 License: Permissive (Apache-2.0)
Python 509 Version:v0.2.2
Python 509 Version:v0.2.2 License: Permissive (MIT)
JavaScript 175 Version:Current
JavaScript 175 Version:Current License: Permissive (MIT)
Preprocessing
Data preprocessing is a process of preparing the raw data and making it suitable for a machine learning model. It is the first and crucial step while creating a machine learning model.
Python 1022 Version:1.1.2
Python 1022 Version:1.1.2 License: Others (Non-SPDX)
Python 201 Version:Current
Python 201 Version:Current License: No License
Python 4354 Version:v0.3.1
Python 4354 Version:v0.3.1 License: Permissive (Apache-2.0)
Open Weaver – Develop Applications Faster with Open Source