C2j-Compiler | converts C language to Java bytecode | Bytecode library

 by   dejavudwh Java Version: v0.0.2 License: No License

kandi X-RAY | C2j-Compiler Summary

kandi X-RAY | C2j-Compiler Summary

C2j-Compiler is a Java library typically used in Programming Style, Bytecode applications. C2j-Compiler has no bugs, it has no vulnerabilities and it has low support. However C2j-Compiler build file is not available. You can download it from GitHub.

A compiler that converts C language to Java bytecode or can directly interpret execution(将C源码编译成Java字节码的编译器,也可以选择直接解释执行)
Support
    Quality
      Security
        License
          Reuse

            kandi-support Support

              C2j-Compiler has a low active ecosystem.
              It has 46 star(s) with 12 fork(s). There are 1 watchers for this library.
              OutlinedDot
              It had no major release in the last 12 months.
              There are 1 open issues and 0 have been closed. There are no pull requests.
              It has a neutral sentiment in the developer community.
              The latest version of C2j-Compiler is v0.0.2

            kandi-Quality Quality

              C2j-Compiler has 0 bugs and 0 code smells.

            kandi-Security Security

              C2j-Compiler has no vulnerabilities reported, and its dependent libraries have no vulnerabilities reported.
              C2j-Compiler code analysis shows 0 unresolved vulnerabilities.
              There are 0 security hotspots that need review.

            kandi-License License

              C2j-Compiler does not have a standard license declared.
              Check the repository for any license declaration and review the terms closely.
              OutlinedDot
              Without a license, all rights are reserved, and you cannot use the library in your applications.

            kandi-Reuse Reuse

              C2j-Compiler releases are available to install and integrate.
              C2j-Compiler has no build file. You will be need to create the build yourself to build the component from source.
              Installation instructions are not available. Examples and code snippets are available.
              C2j-Compiler saves you 3221 person hours of effort in developing the same functionality from scratch.
              It has 6923 lines of code, 505 functions and 99 files.
              It has medium code complexity. Code complexity directly impacts maintainability of the code.

            Top functions reviewed by kandi - BETA

            kandi has reviewed C2j-Compiler and discovered the below as its top functions. This is intended to give you an instant insight into C2j-Compiler implemented functionality, and help decide if they suit your requirements.
            • Generates the productions for the given node
            • Declares the struct as a class
            • Read a value from a field
            • Gets the symbol for an array
            • Execute the production node
            • Generates the Java assembly for printing to the Java code
            • Sets the value of the variable
            • Assign value to an array field
            • Execute the given node
            • Initialize a function definition with a loop
            • Generate nodes from a given node
            • Initialize the keyword map
            • Initialize function definition with switch case
            • Generate code for the cases where an EL expression
            • Emit a method declaration
            • This method initialises computing operation
            • Initialize function definition
            • Generate nodes from the given node
            • Initialize productions
            • Initializes a variable declaration
            • Generate code for statements
            • Initialize the production productions
            • Executes the production
            • Inits the remainder production
            • Initialization of a function definition with an IF statement
            • Generate the AST node
            Get all kandi verified functions for this library.

            C2j-Compiler Key Features

            No Key Features are available at this moment for C2j-Compiler.

            C2j-Compiler Examples and Code Snippets

            C language source program test
            Javadot img1Lines of Code : 102dot img1no licencesLicense : No License
            copy iconCopy
            void quicksort(int A[10], int p, int r) {
                int x;
                int i;
                i = p - 1;
                int j;
                int t;
                int v;
                v = r - 1;
                if (p < r) {
                    x = A[r];
                    for (j = p; j <= v; j++) {
                        if (A[j] <= x) {
                             
            Complier
            Javadot img2Lines of Code : 61dot img2no licencesLicense : No License
            copy iconCopy
            java -jar C2j-Complier.jar -m codegen -f test.c
            
            .class public C2Bytecode
            .super java/lang/Object
            
            .method public static main([Ljava/lang/String;)V
            	sipush	10
            	newarray	int
            	astore	0
            	sipush	0
            	istore	1
            	sipush	0
            	istore	2
            	getstatic	java/lang/System  
            The source file
            Javadot img3Lines of Code : 53dot img3no licencesLicense : No License
            copy iconCopy
            void swap(int arr[10], int i, int j) {
                int temp;
                temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
            
            void quickSort(int a[10], int p, int r) {
                int x;
                int i;
                i = p - 1;
                int j;
                int t;
                int v;
                v = r - 1;
                if (  

            Community Discussions

            QUESTION

            Error while decompiling java class: ItemCollectionInvalidIndex: constants: requested 15873, limit 63
            Asked 2022-Feb-25 at 12:29

            I am decompiling java application, and i have already done with 99% .class files. But, I have a problem with couple of them: error while decompilation (errors are same type). Example:

            Procyon: java.lang.IllegalArgumentException: Argument 'index' must be in the range [0, 63], but value was: 15873...

            CFR:

            ...

            ANSWER

            Answered 2022-Feb-25 at 12:29

            There is nothing wrong with all decompilers i have mentioned before.

            It was a constant_pool_count issue. It happened because of some JPHP decompiler offset troubles. So, if you are trying to reverse jphp applications, use your own software to delim .phb to .class blocks with couple of bytes before each of them

            Source https://stackoverflow.com/questions/70775342

            QUESTION

            Does final keyword on method parameter get compiled to bytecode?
            Asked 2021-Dec-01 at 01:11

            I have the following class:

            ...

            ANSWER

            Answered 2021-Nov-03 at 05:27

            The MethodParameters attribute is used to indicate that parameters are final. https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-4.html#jvms-4.7.24

            In order for javac to add this attribute, you need to pass the -parameters option.

            Source https://stackoverflow.com/questions/69819621

            QUESTION

            How does the JVM know how many values to pop into a new frame when invoking a method via invokevirtual?
            Asked 2021-Nov-22 at 13:26

            When a method is called via invokevirtual, the calling method pops off the values to pass to the called method along with the objectref and places them in the new stack frame.

            How does it know which stack entry is the objectref? My guess is that it does so by looking at the type of the called method and parses this to determine how many values to pop off, but this seems extremely inefficient. Is there some other mechanism that I'm overlooking?

            ...

            ANSWER

            Answered 2021-Nov-20 at 06:36

            There's no one "right" way to do this, but the simplest strategy is to leave the values on the stack, and the called method refers to them via negative offsets. For example, if the called method has 3 params, they're referenced from the base stack offset minus 3, 2, and 1. Each is copied to a local variable and then referenced in the usual manner. The stack offset can be updated to reflect that the params have been consumed. Of course, each local param can also be initially assigned by a bunch of pops, one for each param.

            Other tricks can be performed to speed things up. There's no reason that local variables need to be stored differently than the stack. They can be stored on the stack itself. The passed in params occupy their original locations on the stack, and then additional space is allocated for the remaining local variables by just updating the stack offset. A base stack offset is remembered, and all local variables are referenced via the base offset.

            Essentially, a local variable is just like a stack slot, except it can be accessed at any time, regardless of what's currently been pushed on top.

            Source https://stackoverflow.com/questions/70043595

            QUESTION

            Disassemble a Python script from the command line?
            Asked 2021-Nov-10 at 01:00

            With gcc you can use -S to stop compilation after your code has been compiled into assembly. Is there a similar feature with Python/bytecode? I know of ways like:

            ...

            ANSWER

            Answered 2021-Nov-09 at 22:25

            If what you are looking for is the output of the disassembler, then you can run the module as a script:

            Source https://stackoverflow.com/questions/69905751

            QUESTION

            Can someone explain CALL_FUNCTION and RETURN_VALUE from python bytecode
            Asked 2021-Nov-03 at 09:06

            I'm trying to understand python bytecode and I'm caught on CALL_FUNCTION and RETURN_VALUE.

            Does a function have its own stack? If not, what does the documentation mean by "Returns TOS to the caller of the function"?

            Sorry for the vagueness

            ...

            ANSWER

            Answered 2021-Nov-03 at 09:06

            In CPython every function gets its own stack, it's called a frame in CPython and it's an implementation-specific detail(very old one) and other implementation of Python like IronPython1 and Jython doesn't have this functionality or implement it differently.

            To clarify when we say stack there are multiple stacks involved:

            1. Python stack: The stack of frame objects
            2. Function values stack: The values in each frame object are stored in this stack to be operated on within the scope of this frame2
            3. C stack: For C function calls

            When a function is called a new frame object is created first and placed on the Python stack. This frame object contains the code object of the function, global variables the function has access to, and also the local variables defined in the function get stored in the frame object.

            You can get the current frames in Python stack and current frame using the utilities provided in the inspect module.

            The issue with this is that it is a Python object, it has its own type PyFrame_Type, it gets reference count(gets all headers from PyVarObject) and consumes some memory and if we have a chain of function calls, each time we will be creating these frame objects in memory all over the heap.

            In Python 3.11, the frame object will be replaced by an array of structs that won't have an object header. The frame objects will still be available, but only if we request for it using inspect.currentframe() or sys._get_frame().

            2 Function values stack

            We can check stacksize of a function by accessing co_stacksize attribute of function's code object, this value is determined during the compilation time:

            Source https://stackoverflow.com/questions/69819950

            QUESTION

            Why jump instead of return in Java bytecode?
            Asked 2021-Nov-02 at 16:39
            Background

            I compiled the following method:

            ...

            ANSWER

            Answered 2021-Nov-02 at 16:39

            Frontend compilers generate code using simple patterns, and they rely on optimization passes to clean things up. At the point that the x == y expression is generated, the compiler doesn't "know" that the very next thing is a return statement. It could potentially check this, but that extra step can be handled just as easily with some sort of peephole optimizer.

            The benefit of a peephole optimizer is that it can perform cascading optimizations, that is, the result of one optimization can feed into the next one. The code that generated the x == y expression doesn't really have any way of performing anything more than one optimization step without adding more complexity.

            The java compiler used to have an optimization feature, but this was ditched in favor of HotSpot, which can perform even more powerful optimizations. Performing optimizations in the java compiler would slow it down and not really improve things all that much.

            Source https://stackoverflow.com/questions/69813756

            QUESTION

            Do bytecode commands aligned?
            Asked 2021-Oct-07 at 15:06

            I know that compilers perform data structure alignment and padding according to 4-byte(for 32-bit systems) or 8-byte(64-bit systems) boundaries. But do interpreters align bytecode commands when they generate bytecode? If a command is coded by 1 byte and operands are coded by 1, 2, 4 or 8 bytes then it's seems it's not good for a processor to fetch data if bytecode is interpreted in looped switch? What do you think?

            P.S I'm not asking about interpreters that perform JIT.

            ...

            ANSWER

            Answered 2021-Oct-07 at 15:06

            In general, the answer is no, but the JVM does require 32-bit alignment for the data portions of the lookupswitch and tableswitch instructions. Up to 3 bytes of padding (zeros) must be encoded to ensure proper alignment.

            Source https://stackoverflow.com/questions/69482663

            QUESTION

            Java bytecode - Why is offset being skipped?
            Asked 2021-Oct-05 at 18:45

            I have this very simple class

            ...

            ANSWER

            Answered 2021-Oct-05 at 18:44

            Yes, it's because they are double. In Java Virtual Machine Specification section 2.6.1 Local variables you can read:

            A single local variable can hold a value of type boolean, byte, char, short, int, float, reference, or returnAddress. A pair of local variables can hold a value of type long or double.

            Source https://stackoverflow.com/questions/69455383

            QUESTION

            In the Java bytecode/class format, what determines if a method overrides another?
            Asked 2021-Sep-08 at 21:25

            I know that the bytecode specification allows classes to have methods with the same signature, differing only in the return type, unlike in the Java language. Some languages even make use of that under certain circumstances. My question is related to reflection:

            if in a class I find a (non-private) method with the same name and parameter types as (a non final, non private) one its superclass , and with a return type equal or being a subtype of the return type of the said method in the superclass, when can I assume that code invoking the 'supermethod' statically will always result in the execution of the 'overriding(?)' method (naturally assuming the call is made on an object which is of that class)? Even in cases of other languages compiled to the JVM bytecode, or if runtime code generation is involved, or in hacked synthetic classes like the lambda forwarders?

            My question was brought about from noticing how in the Scala standard library, an Iterable[E] has a method:

            ...

            ANSWER

            Answered 2021-Sep-08 at 12:01

            It all eventually depends on the JVM instruction used:

            • invokespecial would invoke the method without doing dynamic resolution based on the type of current object.

            • invokevirtual would dispatch based on the class.

            Related: Why invokeSpecial is needed when invokeVirtual exists

            So the answer is it depends on the generated bytecode.

            Source https://stackoverflow.com/questions/69102562

            QUESTION

            Java Bytecode Error : Expecting to find object/array on stack
            Asked 2021-Aug-24 at 12:44

            I am compiling a simple language into JVM Bytecode and having some issues with Java object method calls. The verifier gives the error below

            java.lang.VerifyError: (class: Test_1, method: main signature: ()V) Expecting to find object/array on stack

            and below is the generated Java source code from my bytecodes by IntelliJ

            ...

            ANSWER

            Answered 2021-Aug-24 at 12:44

            The signature of ArrayList.get method at 22 is wrong.
            The correct one is (I)Ljava/lang/Object;

            Source https://stackoverflow.com/questions/68907543

            Community Discussions, Code Snippets contain sources that include Stack Exchange Network

            Vulnerabilities

            No vulnerabilities reported

            Install C2j-Compiler

            You can download it from GitHub.
            You can use C2j-Compiler like any standard Java library. Please include the the jar files in your classpath. You can also use any IDE and you can run and debug the C2j-Compiler component as you would do with any other Java program. Best practice is to use a build tool that supports dependency management such as Maven or Gradle. For Maven installation, please refer maven.apache.org. For Gradle installation, please refer gradle.org .

            Support

            Support for all basic statements. Interpreter:supports pointers, arrays, structs, and struct arrays. Complier: Pointer not supported.
            Find more information at:

            Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items

            Find more libraries
            CLONE
          • HTTPS

            https://github.com/dejavudwh/C2j-Compiler.git

          • CLI

            gh repo clone dejavudwh/C2j-Compiler

          • sshUrl

            git@github.com:dejavudwh/C2j-Compiler.git

          • Stay Updated

            Subscribe to our newsletter for trending solutions and developer bootcamps

            Agree to Sign up and Terms & Conditions

            Share this Page

            share link

            Explore Related Topics

            Consider Popular Bytecode Libraries

            jadx

            by skylot

            grumpy

            by google

            gravity

            by marcobambini

            Recaf

            by Col-E

            nectarjs

            by NectarJS

            Try Top Libraries by dejavudwh

            Regex

            by dejavudwhPython

            FragileOS

            by dejavudwhC

            StackChat

            by dejavudwhJavaScript

            Linux0.11-Lab

            by dejavudwhC

            JLua

            by dejavudwhJava