node-moving-things-tracker | javascript implementation of tracker | Stream Processing library

 by   opendatacam JavaScript Version: v0.9.1 License: MIT

kandi X-RAY | node-moving-things-tracker Summary

kandi X-RAY | node-moving-things-tracker Summary

node-moving-things-tracker is a JavaScript library typically used in Data Processing, Stream Processing applications. node-moving-things-tracker has no bugs, it has no vulnerabilities, it has a Permissive License and it has low support. You can download it from GitHub.

node-moving-things-tracker is a javascript implementation of a "tracker by detections" for realtime multiple object tracking (MOT) in node.js / browsers. Commissioned by moovel lab for Beat the Traffic X and the Open Data Cam project.
Support
    Quality
      Security
        License
          Reuse

            kandi-support Support

              node-moving-things-tracker has a low active ecosystem.
              It has 82 star(s) with 22 fork(s). There are 7 watchers for this library.
              OutlinedDot
              It had no major release in the last 12 months.
              There are 5 open issues and 17 have been closed. On average issues are closed in 187 days. There are 1 open pull requests and 0 closed requests.
              It has a neutral sentiment in the developer community.
              The latest version of node-moving-things-tracker is v0.9.1

            kandi-Quality Quality

              node-moving-things-tracker has no bugs reported.

            kandi-Security Security

              node-moving-things-tracker has no vulnerabilities reported, and its dependent libraries have no vulnerabilities reported.

            kandi-License License

              node-moving-things-tracker is licensed under the MIT License. This license is Permissive.
              Permissive licenses have the least restrictions, and you can use them in most projects.

            kandi-Reuse Reuse

              node-moving-things-tracker releases are available to install and integrate.
              Installation instructions are not available. Examples and code snippets are available.

            Top functions reviewed by kandi - BETA

            kandi's functional review helps you automatically verify the functionalities of the libraries and avoid rework.
            Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of node-moving-things-tracker
            Get all kandi verified functions for this library.

            node-moving-things-tracker Key Features

            No Key Features are available at this moment for node-moving-things-tracker.

            node-moving-things-tracker Examples and Code Snippets

            No Code Snippets are available at this moment for node-moving-things-tracker.

            Community Discussions

            QUESTION

            How to do stream processing with Redpanda?
            Asked 2022-Mar-28 at 16:19

            Redpanda seems easy to work with, but how would one process streams in real-time?

            We have a few thousand IoT devices that send us data every second. We would like to get the running average of the data from the last hour for each of the devices. Can the built-in WebAssembly stuff be used for this, or do we need something like Materialize?

            ...

            ANSWER

            Answered 2022-Mar-28 at 16:19

            Any Kafka library should work with RedPanda, including Kafka Streams, KSQL, Apache Spark, Flink, Storm, etc.

            Source https://stackoverflow.com/questions/71649313

            QUESTION

            How to inject delay between the window and sink operator?
            Asked 2022-Mar-08 at 07:37
            Context - Application

            We have an Apache Flink application which processes events

            • The application uses event time characteristics
            • The application shards (keyBy) events based on the sessionId field
            • The application has windowing with 1 minute tumbling window
              • The windowing is specified by a reduce and a process functions
              • So, for each session we will have 1 computed record
            • The application emits the data into a Postgres sink
            Context - Infrastructure

            Application:

            • It is hosted in AWS via Kinesis Data Analytics (KDA)
            • It is running in 5 different regions
            • The exact same code is running in each region

            Database:

            • It is hosted in AWS via RDS (currently it is a PostgreSQL)
            • It is located in one region (with a read replica in a different region)
            Problem

            Because we are using event time characteristics with 1 minute tumbling window all regions' sink emit their records nearly at the same time.

            What we want to achieve is to add artificial delay between window and sink operators to postpone sink emition.

            Flink App Offset Window 1 Sink 1st run Window 2 Sink 2nd run #1 0 60 60 120 120 #2 12 60 72 120 132 #3 24 60 84 120 144 #4 36 60 96 120 156 #5 48 60 108 120 168 Not working work-around

            We have thought that we can add some sleep to evictor's evictBefore like this

            ...

            ANSWER

            Answered 2022-Mar-07 at 16:03

            You could use TumblingEventTimeWindows of(Time size, Time offset, WindowStagger windowStagger) with WindowStagger.RANDOM.

            See https://nightlies.apache.org/flink/flink-docs-stable/api/java/org/apache/flink/streaming/api/windowing/assigners/WindowStagger.html for documentation.

            Source https://stackoverflow.com/questions/71380016

            QUESTION

            Why does my flink window trigger when I have set watermark to be a high number?
            Asked 2021-Jul-25 at 04:48

            I would expect windows to trigger only after we wait until the maximum possible time as defined by the max lateness for watermark.

            .assignTimestampsAndWatermarks( WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofMillis(10000000)) .withTimestampAssigner((order, timestamp) -> order.getQuoteDatetime().getTime())) .keyBy(order-> GroupingsKey.builder().symbol(order.getSymbol()).expiration(order.getExpiration()) .build()) .window(EventTimeSessionWindows.withGap(Time.milliseconds(100000000)))

            In this example, why would the window ever trigger in any meaningful amount of time? The window is a very large window and we wait a very long time for records. When I run my example, the window still gets triggered in under a minute. why is that?

            ...

            ANSWER

            Answered 2021-Jul-25 at 04:48

            Turns out the watermark was being generated after the source was exhausted(in this case it was from reading a file). So the max watermark was emitted(9223372036854775807). A trigger happens when: window.maxTimestamp() <= ctx.getCurrentWatermark()

            See https://stackoverflow.com/a/51554273/1099123

            Source https://stackoverflow.com/questions/68515397

            QUESTION

            Why does this explicit definition of a storm stream not work, while the implicit one does?
            Asked 2021-May-28 at 09:57

            Given a simple Apache Storm Topology that makes use of the Stream API, there are two ways of initializing an Stream:

            Version 1 - implicit declaration

            ...

            ANSWER

            Answered 2021-May-28 at 09:47

            That's because integerStream.filter(x -> x > 5); returns a new stream that you ignore.

            This works:

            Source https://stackoverflow.com/questions/67736466

            QUESTION

            Apache Flink : filtering based on previous value
            Asked 2021-Apr-30 at 14:01

            All filtering examples in apache flink documentation display simple cases of filtering according to a global threshold.

            But what if filtering on an entry should take into account the previous entry?

            Let's say we have a stream of sensor data. We need to discard the current sensor data entry if it's X% larger than then previous entry.

            Is there a simple solution for this? Either in Apache Flink or in plain Java.

            Thanks

            ...

            ANSWER

            Answered 2021-Apr-30 at 08:38

            In flink, this can be done with state.

            Your use case is very similar to the fraud detection example from flink doc.

            Source https://stackoverflow.com/questions/67330635

            QUESTION

            How to expire keyed state with TTL in Apache Flink?
            Asked 2021-Apr-26 at 12:38

            I have a pipeline like this:

            ...

            ANSWER

            Answered 2021-Apr-26 at 12:38

            The pipeline you've described doesn't use any keyed state that would benefit from setting state TTL. The only keyed state in your pipeline is the contents of the session windows, and that state is being purged as soon as possible -- as the sessions close. (Furthermore, since you are using a reduce function, that state consists of just one value per key.)

            For the most part, expiring state is only relevant for state you explicitly create, in which case you will have ready access to the state descriptor and can configure it to use State TTL. Flink SQL does create state on your behalf that might not automatically expire, in which case you will need to use Idle State Retention Time to configure it. The CEP library also creates state on your behalf, and in this case you should ensure that your patterns either eventually match or timeout.

            Source https://stackoverflow.com/questions/67259447

            QUESTION

            How to set the publish interval for topology metrics in Apache Storm?
            Asked 2021-Apr-26 at 12:06

            While Apache Storm offers several metric types, I am interested in the Topology Metrics, (and not the Cluster Metrics or the Metrics v2. For these, a consumer has to be registered, for example as:

            ...

            ANSWER

            Answered 2021-Apr-26 at 12:06

            After looking at the right place, I found the related configuration: topology.builtin.metrics.bucket.size.secs: 10 is they way to specify that interval in storm.yaml.

            Source https://stackoverflow.com/questions/67218020

            QUESTION

            How to force Apache Flink using a modified operator placement?
            Asked 2021-Mar-24 at 10:00

            Apache Flink is distributes its operators on available, free slots on the JobManagers (Slaves). As stated in the documentation, there is the possibility to set the SlotSharingGroup for every operator contained in an execution. This means, that two operators can share the same slot, where they are executed later.

            Unfortunately, this option only allows to share the same group but not to assign a streaming operation to a specific slot.

            So my question is: What would be the best (or at least one) way to manually assign streaming operators to specific slots/workers in Apache Flink?

            ...

            ANSWER

            Answered 2021-Mar-17 at 17:08

            You could disable the chaining via (disableChaining()) and start a new chain to isolate it from others via (startNewChain()). You can play with Flink Plan Visualizer to see if your plan has isolated operators. These modifiers applied affter the operator. Example:

            Source https://stackoverflow.com/questions/66641174

            QUESTION

            What are stream-processing and Kafka-streams in layman terms?
            Asked 2021-Feb-05 at 11:30

            To understand what is kafka-streams I should know what is stream-processing. When I start reading about them online I am not able to grasp an overall picture, because it is a never ending tree of links to new concepts.
            Can any one explain what is stream-processing with a simple real-world example?
            And how to relate it to kafka-streams with producer consumer architecture?

            Thank you.

            ...

            ANSWER

            Answered 2021-Feb-05 at 10:38
            Stream Processing

            Stream Processing is based on the fundamental concept of unbounded streams of events (in contrast to static sets of bounded data as we typically find in relational databases).

            Taking that unbounded stream of events, we often want to do something with it. An unbounded stream of events could be temperature readings from a sensor, network data from a router, order from an e-commerce system, and so on.

            Let's imagine we want to take this unbounded stream of events, perhaps its manufacturing events from a factory about 'widgets' being manufactured.

            We want to filter that stream based on a characteristic of the 'widget', and if it's red route it to another stream. Maybe that stream we'll use for reporting, or driving another application that needs to respond to only red widgets events:

            This, in a rather crude nutshell, is stream processing. Stream processing is used to do things like:

            • filter streams
            • aggregate (for example, the sum of a field over a period of time, or a count of events in a given window)
            • enrichment (deriving values within a stream of a events, or joining out to another stream)

            As you mentioned, there are a large number of articles about this; without wanting to give you yet another link to follow, I would recommend this one.

            Kafka Streams

            Kafka Streams a stream processing library, provided as part of Apache Kafka. You use it in your Java applications to do stream processing.

            In the context of the above example it looks like this:

            Kafka Streams is built on top of the Kafka producer/consumer API, and abstracts away some of the low-level complexities. You can learn more about it in the documentation.

            Source https://stackoverflow.com/questions/66058929

            QUESTION

            How do I handle out-of-order events with Apache flink?
            Asked 2021-Feb-01 at 10:35

            To test out stream processing and Flink, I have given myself a seemingly simple problem. My Data stream consists of x and y coordinates for a particle along with time t at which the position was recorded. My objective is to annotate this data with velocity of the particular particle. So the stream might look some thing like this.

            ...

            ANSWER

            Answered 2021-Jan-31 at 17:07

            One way of doing this in Flink might be to use a KeyedProcessFunction, i.e. a function that can:

            • process each event in your stream
            • maintain some state
            • trigger some logic with a timer based on event time

            So it would go something like this:

            • you need to know some kind of "max out of orderness" about your data. Based on your description, let's assume 100ms for example, such that when processing data at timestamp 1612103771212 you decide to consider you're sure to have received all data until 1612103771112.
            • your first step is to keyBy() your stream, keying by particle id. This means that the logic of next operators in your Flink application can now be expressed in terms of a sequence of events of just one particle, and each particle is processed in this manner in parallel.

            Something like this:

            Source https://stackoverflow.com/questions/65980505

            Community Discussions, Code Snippets contain sources that include Stack Exchange Network

            Vulnerabilities

            No vulnerabilities reported

            Install node-moving-things-tracker

            You can download it from GitHub.

            Support

            For any new features, suggestions and bugs create an issue on GitHub. If you have any questions check and ask questions on community page Stack Overflow .
            Find more information at:

            Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items

            Find more libraries
            CLONE
          • HTTPS

            https://github.com/opendatacam/node-moving-things-tracker.git

          • CLI

            gh repo clone opendatacam/node-moving-things-tracker

          • sshUrl

            git@github.com:opendatacam/node-moving-things-tracker.git

          • Stay Updated

            Subscribe to our newsletter for trending solutions and developer bootcamps

            Agree to Sign up and Terms & Conditions

            Share this Page

            share link

            Explore Related Topics

            Reuse Pre-built Kits with node-moving-things-tracker

            Consider Popular Stream Processing Libraries

            gulp

            by gulpjs

            webtorrent

            by webtorrent

            aria2

            by aria2

            ZeroNet

            by HelloZeroNet

            qBittorrent

            by qbittorrent

            Try Top Libraries by opendatacam

            opendatacam

            by opendatacamJavaScript

            opendatacam-deepstream

            by opendatacamJavaScript

            opendatacam-website

            by opendatacamJavaScript

            opendatacam-mobile

            by opendatacamC