stream-encrypted-chat | end encryption means that they can only read messages | Encryption library
kandi X-RAY | stream-encrypted-chat Summary
kandi X-RAY | stream-encrypted-chat Summary
End-to-end encryption means that they can only read messages sent between two people. To do this, the message is encrypted before it leaves a user's device, and can only be decrypted by the intended recipient. Virgil Security is a vendor that will enable us to create end-to-end encryption via public/private key technology. Virgil provides a platform and JavaScript SDK that will enable us to create, store, and offer robust end-to-end secure encryption. During this tutorial, we will create a Stream Chat app that uses Virgil's encryption to prevent anyone except the intended parties from reading messages. No one in your company, nor any cloud provider you use, can read these messages. Even if a malicious person gained access to the database containing the messages, all they would see is encrypted text, called ciphertext.
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of stream-encrypted-chat
stream-encrypted-chat Key Features
stream-encrypted-chat Examples and Code Snippets
Community Discussions
Trending Discussions on Encryption
QUESTION
Based on the example provided here on how to establish a shared secret and derived key between JS (Crypto-JS) and Python, I can end up with the same shared secret and derived key on both ends.
However, when I try to encrypt as below, I cannot find a way to properly decrypt from Python. My understanding is that probably I am messing with the padding or salts and hashes.
...ANSWER
Answered 2022-Mar-28 at 11:29The issue is that the key is not passed correctly in the CryptoJS code.
The posted Python code generates LefjQ2pEXmiy/nNZvEJ43i8hJuaAnzbA1Cbn1hOuAgA=
as Base64-encoded key. This must be imported in the CryptoJS code using the Base64 encoder:
QUESTION
I am storing a public key in a env variable as a string. This public key is from a .pem file. When I try to use it in my code, I get the following error
...ANSWER
Answered 2022-Mar-28 at 08:47Your key seems to be a PEM encoded public key in X.509/SPKI format. However, the line breaks are missing. These are to be set so that header and footer are each on a single line. In the body there is a line break after every 64 characters.
A correctly formatted PEM key can be processed directly by createPublicKey()
. The key will be accepted even if the line breaks in the body are missing, but header and footer must be in different lines, otherwise the posted error message will be displayed: error:0909006C:PEM routines:get_name:no start line.
Example:
QUESTION
I am using CryptoSwift 1.4.1, iOS 15.2, PyCryptodome 3.12.0, and XCode 13.2.1 to encrypt small string messages that I send to a Raspberry Pi Linux Device over BLE. It works when iOS encrypts the message and sends it to the Raspberry Pi. The Pi can successfully decrypt it. Now I want to do the inverse, encrypt a message on the Pi and have the iOS App read and decrypt it. This, however is not working and the decrypted value is the not the message I encrypted on the Pi.
Working iOS encryption:
...ANSWER
Answered 2022-Jan-28 at 10:30In the encrypt()
method the IV is not considered. As in aesEncrypt()
, the IV must be passed and used when creating the AES object.
Furthermore there are bugs in the encoding: The plaintext must be UTF8 encoded and the ciphertext must be hex encoded:
QUESTION
I want to encrypt data in a web browser that is send to my C# backend and decrypted there.
That fails because I am unable to decrypt the data generated on the frontend in the backend.
Here's what I did so far.
First I created a private/public key pair (in XmlString Format). I took the ExportPublicKey
function to generate the public key file from here: https://stackoverflow.com/a/28407693/98491
ANSWER
Answered 2022-Jan-24 at 15:42You need to encrypt with the private key and then decrypt with the public key
QUESTION
I'm trying to implement a function in Java to calculate the key check value for a 128 bit AES encryption key. The AES128CBCEncryptor class is implementing AES/128/CBC with ISO 9797-1 M2 padding.
The only information I can find on the key check value algorithm for AES says "the KCV for an AES key is computed by encrypting 16 bytes, each with value '01'.". It does not specify how the IV should be constructed.
Here is what I have thus far, but it's not generating the expected result:
...ANSWER
Answered 2022-Jan-13 at 16:47For a Key Check Value (KCV) one generally uses single block encryption, without any mode such as ECB or CBC. As only a constant value of 16 bytes is used, there is no need for padding either.
If you just have a CBC class that performs ISO 9797-1 M2 padding then you could encrypt the static value of 01010101010101010101010101010101
(hex encoding of 16 bytes), using an all-zero IV and taking the first 16 bytes from the result (removing 16 bytes of ciphertext at the end that is just encryption of the mandatory padding).
As you can see in the image below, because the IV is all zero, the XOR with the plaintext leaves the input intact, basically making the first ciphertext identical to direct encryption with the block cipher.
By WhiteTimberwolf (SVG version) - PNG version, Public Domain, https://commons.wikimedia.org/w/index.php?curid=26434096
However, as you are using Java, it makes more sense to use a Cipher
object using algorithm "AES/ECB/NoPadding"
and use that to encrypt the value of 01010101010101010101010101010101
directly. ECB doesn't take an IV, so that problem is avoided. Also, no padding needs to be considered when "NoPadding"
is specified.
If you need fewer bytes: those are usually taken from the left (lowest index) of the result.
Beware that these kinds of KCV's are somewhat dangerous as they show the ciphertext of one particular plaintext block. In the worst instances, this could lead to an adversary decrypting one ciphertext block, or for an authenticated scheme to lose its integrity/authentication properties.
Commonly KCV's are over an all-zero plaintext block. Using an all one-valued block makes the chance that this happens smaller, but that chance is still significant.
QUESTION
I have a private key that was generated by running:
...ANSWER
Answered 2021-Dec-30 at 11:17Depending on your .NET version, you may not need BouncyCastle at all. As of .NET Core 3.1 there is RSA.ImportEncryptedPkcs8PrivateKey()
for DER encoded encrypted private PKCS#8 keys and as of .NET 5.0 there is even RSA.ImportFromEncryptedPem()
for PEM encoded encrypted keys.
Otherwise with C#/BouncyCastle the import of an encrypted private PKCS#8 key is available e.g. with:
QUESTION
I'm using a string Encryption/Decryption class similar to the one provided here as a solution.
This worked well for me in .Net 5.
Now I wanted to update my project to .Net 6.
When using .Net 6, the decrypted string does get cut off a certain point depending on the length of the input string.
▶️ To make it easy to debug/reproduce my issue, I created a public repro Repository here.
- The encryption code is on purpose in a Standard 2.0 Project.
- Referencing this project are both a .Net 6 as well as a .Net 5 Console project.
Both are calling the encryption methods with the exact same input of "12345678901234567890"
with the path phrase of "nzv86ri4H2qYHqc&m6rL"
.
.Net 5 output: "12345678901234567890"
.Net 6 output: "1234567890123456"
The difference in length is 4
.
I also looked at the breaking changes for .Net 6, but could not find something which guided me to a solution.
I'm glad for any suggestions regarding my issue, thanks!
Encryption Class
...ANSWER
Answered 2021-Nov-10 at 10:25The reason is this breaking change:
DeflateStream, GZipStream, and CryptoStream diverged from typical Stream.Read and Stream.ReadAsync behavior in two ways:
They didn't complete the read operation until either the buffer passed to the read operation was completely filled or the end of the stream was reached.
And the new behaviour is:
Starting in .NET 6, when Stream.Read or Stream.ReadAsync is called on one of the affected stream types with a buffer of length N, the operation completes when:
At least one byte has been read from the stream, or The underlying stream they wrap returns 0 from a call to its read, indicating no more data is available.
In your case you are affected because of this code in Decrypt
method:
QUESTION
I like to store a username and password to the user.config in my C# .net5 program. I don't want to store the password direct and I decided to decrypt the userSettings section. After decryption parts of the file are missing.
Orginal user.config:
...ANSWER
Answered 2021-Dec-01 at 09:21After playing around with this for a while, I discovered that the issue comes from the ConfigurationSaveMode.Full
option.
In both ProtectSettings()
and UnProtectSettings()
, instead of
QUESTION
i have created a function enc()
...ANSWER
Answered 2021-Nov-07 at 12:03You need to rework your function.
Python isn’t smart enough to know which part of the code you need multiprocessed.
Most likely it’s the for loop right, you want to encrypt the files in parallel. So you can try something like this.
Define the function which needs to be run for each loop, then, create the for loop outside. Then use multiprocessing like this.
QUESTION
Basically, how/where do I persist encryption keys my executable needs?
Let me explain how my executable looks like. It's basically a Swift script that is compiled using swift build --configuration=release --product=App
.
Package.swift
:
ANSWER
Answered 2021-Sep-29 at 16:50To protect your app from modification, codesign it. You can use a private key or use Apple's notarization service. This will ensure no one modifies your app or distributes an installer that tries to replace your app.
Keychain items your app creates can have access control lists, but even by default, the OS won't allow other apps to read your app's keychain items without being approved by the user. The user will receive a pop-up indicating the item the app is requesting.
So I believe your best bet is to sign your app, and store the data in Keychain. It should generally work as you want out of the box. But of course do a lot of testing. Generally these things fail-secure, so in most cases it won't leak any data to other apps. But you may get more pop-ups than you want the user to deal with if you make mistakes.
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install stream-encrypted-chat
A user authenticates with your backend.
The user's app requests a Stream auth token and api key from the backend. The browser creates a Stream Chat Client for that user.
The user's app requests a Virgil auth token from the backend and registers with Virgil. This generates their private and public key. The private key is stored locally, and the public key is stored in Virgil.
Once the user decides who they want to chat with the app creates and joins a Stream Chat Channel.
The app asks Virgil for receiver's public key.
The user types a message and sends it to stream. Before sending, the app passes the receiver's public key to Virgil to encrypt the message. The message is relayed through Stream Chat to the receiver. Stream receives ciphertext, meaning they can never see the original message.
The receiving user decrypts the sent message using Virgil. When the message is received, app decrypts the message using the Virgil and this is passed along to Stream's React components. Virgil verifies the message is authentic by using the sender's public key.
For our React frontend to interact with Stream and Virgil, the application provides three endpoints:.
POST /v1/authenticate: This endpoint generates an auth token that allows the React frontend to communicate with /v1/stream-credentials and /v1/virgil-credentials. To keep things simple, this endpoint allows the client to be any user. The frontend tells the backend who it wants to authenticate as. In your application, this should be replaced with your API's authentication endpoint.
POST /v1/stream-credentials: This returns the data required for the React app to establish a session with Stream. In order return this info we need to tell Stream this user exists and ask them to create a valid auth token: // backend/src/controllers/v1/stream-credentials.js exports.streamCredentials = async (req, res) => { const data = req.body; const apiKey = process.env.STREAM_API_KEY; const apiSecret = process.env.STREAM_API_SECRET; const client = new StreamChat(apiKey, apiSecret); const user = Object.assign({}, data, { id: `${req.user.sender}`, role: 'admin', image: `https://robohash.org/${req.user.sender}`, }); const token = client.createToken(user.id); await client.updateUsers([user]); res.status(200).json({ user, token, apiKey }); } The response payload has this shape: { "apiKey": "<string>", "token": "<string>", "user": { "id": "<string>", "role": "<string>", "image": "<string>" } } apiKey is the stream account identifier for your Stream instance. Needed to identify what account your frontend is trying to connect with. token JWT token to authorize the frontend with Stream. user: This object contains the data that the frontend needs to connect and render the user's view.
POST /v1/virgil-credentials: This returns the authentication token used to connect the frontend to Virgil. We use the Virgil Crypto SDK to generate a valid auth token for us: // backend/src/controllers/v1/virgil-credentials.js const virgilCrypto = new VirgilCrypto(); const generator = new JwtGenerator({ appId: process.env.VIRGIL_APP_ID, apiKeyId: process.env.VIRGIL_KEY_ID, apiKey: virgilCrypto.importPrivateKey(process.env.VIRGIL_PRIVATE_KEY), accessTokenSigner: new VirgilAccessTokenSigner(virgilCrypto) }); exports.virgilCredentials = async (req, res) => { const virgilJwtToken = generator.generateToken(req.user.sender); res.json({ token: virgilJwtToken.toString() }); }; In this case, the frontend only needs the auth token.
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page