Python_Data_Analysis | 课程内容 第1讲 Python入门 安装Python与环境配置 Anaconda安装和使用 Jupyter
kandi X-RAY | Python_Data_Analysis Summary
kandi X-RAY | Python_Data_Analysis Summary
Python_Data_Analysis is a Jupyter Notebook library. Python_Data_Analysis has no bugs, it has no vulnerabilities and it has low support. You can download it from GitHub.
课程内容 第1讲 Python入门 安装Python与环境配置 Anaconda安装和使用 Jupyter Notebook 常用数据分析库Numpy、Scipy、Pandas和matplotlib安装和简介 Numpy Scipy Pandas matplotlib 常用高级数据分析库nltk、igraph和scikit-learn介绍 ntlk igraph scikit-learn Python2和Python3区别简介. 第2讲 准备数据与Numpy Numpy 简介 基本功能 效率对比 Numpy的ndarray 创建ndarray Numpy数据类型 数组与标量之间的运算 基本的索引和切片 布尔型索引 花式索引 数组转置和轴对称 快速的元素级数组函数 利用数组进行数据处理 简介 将条件逻辑表述为数组运算 数学和统计方法 用于布尔型数组的方法 排序 去重以及其他集合运算 数组文件的输入输出 线性代数 随机数生成 高级应用 数组重塑 数组的合并和拆分 元素的重复操作 花式索引的等价函数 例题分析 距离矩阵计算. 第3讲 Python数据分析主力Pandas Pandas简介 基本功能 数据结构 Series DataFrame 索引对象 基本功能 重新索引 丢弃指定轴上的项 索引、选取和过滤 算术运算和数据对齐 函数应用和映射 排序和排名 带有重复值的索引 汇总和计算描述统计 常用方法选项 常用描述和汇总统计函数 相关系数与协方差 唯一值以及成员资格 处理缺失数据 滤除缺失数据 填充缺失数据 层次化索引 重新分级顺序 根据级别汇总统计 使用DataFrame的列 其他话题 整数索引 面板(Pannel)数据. 第4讲 数据获取与处理 多种格式数据加载、处理与存储 各式各样的文本数据 CSV与TXT读取 分片/块读取文本数据 把数据写入文本格式 手动读写数据(按要求) JSON格式的数据 人人都爱爬虫,人人都要解析XML 和 HTML 解析XML 二进制格式的数据、使用HDF5格式、HTML与API交互 数据库相关操作 sqlite数据库 MySQL数据库 Memcache MongoDB Crawl and parsing HTML with Beauitful Soup 创建dataframe然后输出出来,为一会儿爬取做准备 Download the HTML and create a Beautiful Soup object 解析Beautiful Soup结构体 python正则表达式 学会用re.compile(strPattern[, flag]) Match Pattern match与search split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]) findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]) finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]) sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]) subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]) 特征工程小案例:城市自行车共享系统使用状况. 第5讲 数据可视化Matplotlib Beyond柱状图:可视化能够为我们做些什么 可视化的理论介绍 圣经引用可视化;洞察数据内涵;寻找潜在模式 糟糕的可视化:一些具体案例 内容太多,KEEP IT SIMPLE STUPID WRONG SCALE 乱用三维 少用3D,不要为了酷炫而酷炫 The Purpose of Data Visualization is to Convey Information to People 一些可视化设计原则 一些可视化场景 MORE THAN 2 DIMENSION TREE MAP 可视化项目入门实战 如何使用python进行初步的可视化工作 学会从网上找资源 D3js.org ——> Visual Index Coding实战 拿到数据,可视化看一看 知道画什么,比知道怎么画更重要!!!. 第7讲 Python社交网络分析igraph 社交网络算法介绍 社交网络 社交网络算法应用场景 安装igraph 什么是图? Undirected和Directed; Bipartite和Multigraph 图数据集 社交网络算法 分析指标 度 紧密中心性(closeness centrality) 介数中心性(betweenness centrality) 点介数 PageRank算法 社区发现算法 GN算法 GN算法-边介数(Betweenness) GN算法-community_edge_betweenness 社区评价指标 模块度Modularity Conductance Louvain算法 LPA算法 SLPA算法 代码时间 Learn_igraph(net.data) 分析权利的游戏网络(stormofswords.csv) 社交网络算法在金融反欺诈中的应用 工具推荐. 第8讲 Python机器学习scikit-learn What is Machine Learning? 3 Types of Learning Scikit-learn algorithm cheet-sheet The simplest Sklearn workflow Data Representation Generation Synthetic Data Supervised Workflow Linear Regression Unsupervised Transformers Feature Scaling Principal Component Analysis K-means Clustering Scikit-learn API Preprocessing & Classification Overview Holdout Evaluation Holdout Validation Learning Curves Grid Search Confusion Matrix Support Vector Machines Kernel Trick Decision Trees Classification & Continuous Features Impurity measures Deep learning 4 Key Factors that makes magic happens Linear Models Neural Networks Inside a Neuron Multi-layer NN CNN key ideas Dropout Convolution layer Case Study: LeNet-5, AlexNet, ZFNet, VGGNet, ResNet Transfer Learning Fool your Conv-net RNN and Language Model LSTM Word2Vec. 第9讲 数据科学完整案例 Word-cup-analysis Ipython-soccer-predictions.
课程内容 第1讲 Python入门 安装Python与环境配置 Anaconda安装和使用 Jupyter Notebook 常用数据分析库Numpy、Scipy、Pandas和matplotlib安装和简介 Numpy Scipy Pandas matplotlib 常用高级数据分析库nltk、igraph和scikit-learn介绍 ntlk igraph scikit-learn Python2和Python3区别简介. 第2讲 准备数据与Numpy Numpy 简介 基本功能 效率对比 Numpy的ndarray 创建ndarray Numpy数据类型 数组与标量之间的运算 基本的索引和切片 布尔型索引 花式索引 数组转置和轴对称 快速的元素级数组函数 利用数组进行数据处理 简介 将条件逻辑表述为数组运算 数学和统计方法 用于布尔型数组的方法 排序 去重以及其他集合运算 数组文件的输入输出 线性代数 随机数生成 高级应用 数组重塑 数组的合并和拆分 元素的重复操作 花式索引的等价函数 例题分析 距离矩阵计算. 第3讲 Python数据分析主力Pandas Pandas简介 基本功能 数据结构 Series DataFrame 索引对象 基本功能 重新索引 丢弃指定轴上的项 索引、选取和过滤 算术运算和数据对齐 函数应用和映射 排序和排名 带有重复值的索引 汇总和计算描述统计 常用方法选项 常用描述和汇总统计函数 相关系数与协方差 唯一值以及成员资格 处理缺失数据 滤除缺失数据 填充缺失数据 层次化索引 重新分级顺序 根据级别汇总统计 使用DataFrame的列 其他话题 整数索引 面板(Pannel)数据. 第4讲 数据获取与处理 多种格式数据加载、处理与存储 各式各样的文本数据 CSV与TXT读取 分片/块读取文本数据 把数据写入文本格式 手动读写数据(按要求) JSON格式的数据 人人都爱爬虫,人人都要解析XML 和 HTML 解析XML 二进制格式的数据、使用HDF5格式、HTML与API交互 数据库相关操作 sqlite数据库 MySQL数据库 Memcache MongoDB Crawl and parsing HTML with Beauitful Soup 创建dataframe然后输出出来,为一会儿爬取做准备 Download the HTML and create a Beautiful Soup object 解析Beautiful Soup结构体 python正则表达式 学会用re.compile(strPattern[, flag]) Match Pattern match与search split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]) findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]) finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]) sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]) subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]) 特征工程小案例:城市自行车共享系统使用状况. 第5讲 数据可视化Matplotlib Beyond柱状图:可视化能够为我们做些什么 可视化的理论介绍 圣经引用可视化;洞察数据内涵;寻找潜在模式 糟糕的可视化:一些具体案例 内容太多,KEEP IT SIMPLE STUPID WRONG SCALE 乱用三维 少用3D,不要为了酷炫而酷炫 The Purpose of Data Visualization is to Convey Information to People 一些可视化设计原则 一些可视化场景 MORE THAN 2 DIMENSION TREE MAP 可视化项目入门实战 如何使用python进行初步的可视化工作 学会从网上找资源 D3js.org ——> Visual Index Coding实战 拿到数据,可视化看一看 知道画什么,比知道怎么画更重要!!!. 第7讲 Python社交网络分析igraph 社交网络算法介绍 社交网络 社交网络算法应用场景 安装igraph 什么是图? Undirected和Directed; Bipartite和Multigraph 图数据集 社交网络算法 分析指标 度 紧密中心性(closeness centrality) 介数中心性(betweenness centrality) 点介数 PageRank算法 社区发现算法 GN算法 GN算法-边介数(Betweenness) GN算法-community_edge_betweenness 社区评价指标 模块度Modularity Conductance Louvain算法 LPA算法 SLPA算法 代码时间 Learn_igraph(net.data) 分析权利的游戏网络(stormofswords.csv) 社交网络算法在金融反欺诈中的应用 工具推荐. 第8讲 Python机器学习scikit-learn What is Machine Learning? 3 Types of Learning Scikit-learn algorithm cheet-sheet The simplest Sklearn workflow Data Representation Generation Synthetic Data Supervised Workflow Linear Regression Unsupervised Transformers Feature Scaling Principal Component Analysis K-means Clustering Scikit-learn API Preprocessing & Classification Overview Holdout Evaluation Holdout Validation Learning Curves Grid Search Confusion Matrix Support Vector Machines Kernel Trick Decision Trees Classification & Continuous Features Impurity measures Deep learning 4 Key Factors that makes magic happens Linear Models Neural Networks Inside a Neuron Multi-layer NN CNN key ideas Dropout Convolution layer Case Study: LeNet-5, AlexNet, ZFNet, VGGNet, ResNet Transfer Learning Fool your Conv-net RNN and Language Model LSTM Word2Vec. 第9讲 数据科学完整案例 Word-cup-analysis Ipython-soccer-predictions.
Support
Quality
Security
License
Reuse
Support
Python_Data_Analysis has a low active ecosystem.
It has 0 star(s) with 0 fork(s). There are 1 watchers for this library.
It had no major release in the last 6 months.
Python_Data_Analysis has no issues reported. There are no pull requests.
It has a neutral sentiment in the developer community.
The latest version of Python_Data_Analysis is current.
Quality
Python_Data_Analysis has 0 bugs and 0 code smells.
Security
Python_Data_Analysis has no vulnerabilities reported, and its dependent libraries have no vulnerabilities reported.
Python_Data_Analysis code analysis shows 0 unresolved vulnerabilities.
There are 0 security hotspots that need review.
License
Python_Data_Analysis does not have a standard license declared.
Check the repository for any license declaration and review the terms closely.
Without a license, all rights are reserved, and you cannot use the library in your applications.
Reuse
Python_Data_Analysis releases are not available. You will need to build from source code and install.
It has 119743 lines of code, 44 functions and 66 files.
It has low code complexity. Code complexity directly impacts maintainability of the code.
Top functions reviewed by kandi - BETA
kandi's functional review helps you automatically verify the functionalities of the libraries and avoid rework.
Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of Python_Data_Analysis
Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of Python_Data_Analysis
Python_Data_Analysis Key Features
No Key Features are available at this moment for Python_Data_Analysis.
Python_Data_Analysis Examples and Code Snippets
No Code Snippets are available at this moment for Python_Data_Analysis.
Community Discussions
No Community Discussions are available at this moment for Python_Data_Analysis.Refer to stack overflow page for discussions.
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install Python_Data_Analysis
You can download it from GitHub.
Support
For any new features, suggestions and bugs create an issue on GitHub.
If you have any questions check and ask questions on community page Stack Overflow .
Find more information at:
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page