cdflib | python module for reading NASA | Dataset library
kandi X-RAY | cdflib Summary
kandi X-RAY | cdflib Summary
cdflib is a python module to read/write CDF (Common Data Format .cdf) files without needing to install the CDF NASA library. Python ≥ 3.6 is required. This module uses only Numpy, no complicated prereqs.
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
- Create a CDF file from a dataset
- Closes the file
- Set the current position
- Compute the MD5 hash of a file
- Convert a CDF file into an xarray object
- Converts a CDF file into a Python dictionary
- Convert data types to time types
- Get attribute value
- Find the epoch range for the given epoch
- Read a GDR header
- Handler for file or url
- Converts cdf to unix time
- Read a GDR2 GDR2 tag
- Reads a CDR2 header
- Get an epoch range for the given epoch range
- Validates the MD5 file
- Uncompress the cdf file
- Convert a time series into a list of datetime objects
- Unstream a file
- Convert cdf to a list of epochs
- Compute the CDF epoch
- Read a CDR
- Write a CDR header
- Parse a CDF epoch
- Write the GDR header
- Encode the given datetimes
cdflib Key Features
cdflib Examples and Code Snippets
CDF_EPOCH: 'dd-mon-year hh:mm:ss.mmm'
CDF_EPOCH16: 'dd-mon-year hh:mm:ss.mmm.uuu.nnn.ppp'
CDF_TIME_TT2000: 'year-mm-ddThh:mm:ss.mmmuuunnn'
import cdfwrite
import cdfread
import numpy as np
cdf_master = cdfread.CDF('/path/to/master_file.cdf')
if (cd
globalAttrs={}
globalAttrs['Global1']={0: 'Global Value 1'}
globalAttrs['Global2']={0: 'Global Value 2'}
globalAttrs['Global3']={0: [12, 'cdf_int4']}
globalAttrs['Global4']={0: [12.34, 'cdf_double']}
globalAttrs['Global3']={0: 12} as 'cdf_int4'
variableAttrs={}
entries_1={}
entries_1['var_name_1'] = 'abcd'
entries_1['var_name_2'] = [12, 'cdf_int4']
....
variableAttrs['attr_name_1'] = entries_1
entries_2={}
entries_2['var_name_1'] = 'xyz'
entries_2['var_name_2'] = [[12, 34], 'cdf_int4']
..
Community Discussions
Trending Discussions on cdflib
QUESTION
The implementation of the non-central chi-squared distribution in scipy (scipy.stats.ncx2, scipy.special.chndtr) is not accurate for large values of the non-centrality parameter. E.g. consider
...ANSWER
Answered 2018-Apr-19 at 12:52Answering my own question, in case it is useful to someone: the R implementation of the non-central chi-squared distribution can be accessed from python using rpy2 as follows (adapting the example above):
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install cdflib
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page