Elliptical-Curve-Cryptography | File Encryption/Decryption and Implementation | Cryptography library
kandi X-RAY | Elliptical-Curve-Cryptography Summary
kandi X-RAY | Elliptical-Curve-Cryptography Summary
Elliptic Curve Cryptography (ECC) is a public key cryptography. In public key cryptography each user or the device taking part in the communication generally have a pair of keys, a public key and a private key, and a set of operations associated with the keys to do the cryptographic operations. Only the particular user knows the private key whereas the public key is distributed to all users taking part in the communication. The public key is a point on the curve and the private key is a random number. The public key is obtained by multiplying the private key with a generator point G in the curve. The mathematical operations of ECC is defined over the elliptic curve y^2 = x^3 + ax + b, where 4a^3 + 27b^2 ≠ 0. Each value of the ‘a’ and ‘b’ gives a different elliptic curve. One main advantage of ECC is its small key size. A 160-bit key in ECC is considered to be as secured as 1024-bit key in RSA.
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
- Decrypt the private key
- Return the order of g
- Generate a polynomial
- Checks if a point is valid
- Compute the secret of a public key
- Add two coordinates
- Return the inverse of n
- Return the coordinates at the given position
- Greatest common divider
- Computes the Jacobian of the Jacobian
- Multiply the value p
- Generate square root of n
- Encipher a plaintext message
- Shift a character by key
- Encrypts the data using ecdhencrypt
- Load values from the current selection
- Decipher a string
Elliptical-Curve-Cryptography Key Features
Elliptical-Curve-Cryptography Examples and Code Snippets
Community Discussions
Trending Discussions on Cryptography
QUESTION
I'm trying to achieve the exact opposite of this here where I need to sign a payload in Python using ECDSA and be able to verify the signature in JS.
Here is my attempt, but I'm pretty sure I'm missing something with data transformation on either or both ends.
(Key types are the same as in the answer provided to the question above)
I've tried some other variations but nothing worked so far.
(The verification on JS returns False)
Python:
...ANSWER
Answered 2022-Apr-10 at 18:16The main problem is that both codes use different signature formats:
sign_payload()
in the Python code generates an ECDSA signature in ASN.1/DER format. The WebCrypto API on the other hand can only handle the IEEE P1363 format.
Since the Python Cryptography library is much more convenient than the low level WebCrypto API it makes sense to do the conversion in Python code.
The following Python code is based on your code, but additionally performs the transformation into the IEEE P1363 format at the end:
QUESTION
In .NET 6 code from How can I SHA512 a string in C#?
...ANSWER
Answered 2021-Nov-27 at 16:16In my case I was using RNGCryptoServiceProvider in .NET 5 but when I updated to .NET 6 I got the same warning. After reading about it in this issue I changed my code from this:
QUESTION
Based on the example provided here on how to establish a shared secret and derived key between JS (Crypto-JS) and Python, I can end up with the same shared secret and derived key on both ends.
However, when I try to encrypt as below, I cannot find a way to properly decrypt from Python. My understanding is that probably I am messing with the padding or salts and hashes.
...ANSWER
Answered 2022-Mar-28 at 11:29The issue is that the key is not passed correctly in the CryptoJS code.
The posted Python code generates LefjQ2pEXmiy/nNZvEJ43i8hJuaAnzbA1Cbn1hOuAgA=
as Base64-encoded key. This must be imported in the CryptoJS code using the Base64 encoder:
QUESTION
Everytime I publish my Blazor Server-project to my website domain, and opening the website, this exception occurs, and there's little to no help Googling it:
And it says AppState.cs: line 21
, so here's the codeline for it:
This exception is not happening under debugging localhost. When I delete localStorage from the browser on my website, and refreshing, then everything works. But I don't want my customers having this exception and having to tell them to delete the localstorage everytime I'm publishing.
My Program.cs if necessary:
...ANSWER
Answered 2022-Mar-16 at 13:16Try to set Load User Profile
to true in your IIS
app pool in the advanced settings.
see this answer, I hope that will help you!
QUESTION
I'm experimenting with Chaum's blind signature, and what I'm trying to do is have the blinding and un-blinding done in JavaScript, and signing and verifying in Java (with bouncy castle). For the Java side, my source is this, and for JavaScript, I found blind-signatures. I've created two small codes to play with, for the Java side:
...ANSWER
Answered 2021-Dec-13 at 14:56The blind-signature library used in the NodeJS code for blind signing implements the process described here:
BlindSignature.blind()
generates the SHA256 hash of the message and determines the blind message m' = m * re mod N.BlindSignature.sign()
calculates the blind signature s' = (m')d mod N.BlindSignature.unblind()
determines the unblind signature s = s' * r-1 mod N.BlindSignature.verify()
decrypts the unblind signature (se) and compares the result with the hashed message. If both are the same, the verification is successful.
No padding takes place in this process.
In the Java code, the implementation of signing the blind message in signConcealedMessage()
is functionally identical to BlindSignature.sign()
.
In contrast, the verification in the Java code is incompatible with the above process because the Java code uses PSS as padding during verification.
A compatible Java code would be for instance:
QUESTION
We are trying to make a JWT token for Apple Search Ads using the KJUR jws library. We are using the API documents from Apple:
We are generating a private key (prime256v1 curve):
openssl ecparam -genkey -name prime256v1 -noout -out private-key.pem
Next we are generating a public key from the private key:
openssl ec -in private-key.pem -pubout -out public-key.pem
Next we setup the header and payload:
...ANSWER
Answered 2022-Mar-02 at 07:47The issue is caused by an incorrect import of the key.
The posted key is a PEM encoded private key in SEC1 format. In getKey()
the key is passed in JWK format, specifying the raw private key d
. The PEM encoded SEC1 key is used as the value for d
. This is incorrect because the raw private key is not identical to the SEC1 key, but is merely contained within it.
To fix the problem, the key must be imported correctly. jsrsasign also supports the import of a PEM encoded key in SEC1 format, but then it also needs the EC parameters, s. e.g. here. For prime256v1 aka secp256r1 this is:
QUESTION
I trying to get the RSA signature as described in Annex A2.1 of EMV book 2. As I understand it was described in ISO9796-2 as scheme 1, option 1. So, the resulting signature should contain a Header equal to '6A' and a Trailer equal to 'BC'.
The algorithms ALG_RSA_SHA_ISO9796 and ALG_RSA_SHA_ISO9796_MR are the only suitable that I could find. But they acting like scheme 1, option 2 with a Trailer equal to '33cc'
Is it possible to get a signature with Trailer = 'BC'?
Javacard example code:
...ANSWER
Answered 2022-Feb-24 at 10:46You can generate such signature using Cipher.ALG_RSA_NOPAD
in decrypt mode.
Pseudocode:
QUESTION
Hello I am trying to transfer a custom SPL token with the solana-wallet adapter. However i am having trouble getting the wallet's secret key/signing the transaction.
I've looked at these answers for writing the transfer code but i need to get the Singer and i have trouble figuring out how with solana-wallet adapter. These examples hardcode the secret key and since i'm using a wallet extension this is not possible.
How can you transfer SOL using the web3.js sdk for Solana?
How to transfer custom token by '@solana/web3.js'
according to this issue on the webadapter repo https://github.com/solana-labs/wallet-adapter/issues/120 you need to:
- Create a @solana/web3.js Transaction object and add instructions to it
- Sign the transaction with the wallet
- Send the transaction over a Connection
But i am having difficulty finding examples or documentation as to how to do step 1 and 2.
...ANSWER
Answered 2021-Dec-06 at 13:51So i found a way to do this, it requires some cleanup and error handling but allows for a custom token transaction via @solana/wallet-adapter
.
QUESTION
I have a base64-encoded public key in DER format. In Python, how can I convert it into a COSE key?
Here is my failed attempt:
...ANSWER
Answered 2022-Jan-01 at 07:49The posted key is an EC key for curve P-256 in X.509 format.
With an ASN.1 parser (e.g. https://lapo.it/asn1js/) the x and y coordinates can be determined:
QUESTION
I'm switching from the pure Python ecdsa
library to the much faster coincurve
library for signing data. I would also like to switch to coincurve
for verifying the signatures (including the old signatures created by the ecdsa
library).
It appears that signatures created with ecdsa
are not (always?) valid in coincurve
. Could someone please explain why this is not working? Also, it seems that cryptography
library is able to validate both ecdsa
signatures and coincurve
signatures without issues, consistently.
What is even more confusing, if you run below script a few times, is that sometimes it prints point 3 and other times it does not. Why would coincurve
only occasionally find the signature valid?
ANSWER
Answered 2021-Dec-25 at 14:41Bitcoin and the coincurve library use canonical signatures while this is not true for the ecdsa library.
What does canonical signature mean?
In general, if (r,s)
is a valid signature, then (r,s') := (r,-s mod n)
is also a valid signature (n
is the order of the base point).
A canonical signature uses the value s' = -s mod n = n - s
instead of s
, i.e. the signature (r, n-s)
, if s > n/2
, s. e.g. here.
All signatures from the ecdsa library that were not been successfully validated by the coincurve library in your test program have an s > n/2
and thus are not canonical, whereas those that were successfully validated are canonical.
So the fix is simply to canonize the signature of the ecdsa library, e.g.:
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install Elliptical-Curve-Cryptography
You can use Elliptical-Curve-Cryptography like any standard Python library. You will need to make sure that you have a development environment consisting of a Python distribution including header files, a compiler, pip, and git installed. Make sure that your pip, setuptools, and wheel are up to date. When using pip it is generally recommended to install packages in a virtual environment to avoid changes to the system.
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page