waveglow | PyTorch implementation of the WaveGlow | Speech library
kandi X-RAY | waveglow Summary
kandi X-RAY | waveglow Summary
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis.
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
- Logs a message at the given level
- Get the caller s caller function
- Gets the next log count per token
- Retrieves the file and line number
- Forward convolutional
- Calculate the weight matrix
- Try to restore a checkpoint from the checkpoint
- Load a checkpoint
- Set verbosity
- Log a debug message
- Log an error
- Log a message at the given logger
- Log a warning
- Build a waveglow model
- Get verbosity
- Write a wav file
- Logs a message with the first n lines
- Save a checkpoint
- Log an informational message
waveglow Key Features
waveglow Examples and Code Snippets
Community Discussions
Trending Discussions on waveglow
QUESTION
I'm quite new to AI and I'm currently developing a model for non-parallel voice conversions. One confusing problem that I have is the use of vocoders.
So my model needs Mel spectrograms as the input and the current model that I'm working on is using the MelGAN vocoder (Github link) which can generate 22050Hz Mel spectrograms from raw wav files (which is what I need) and back. I recently tried WaveGlow Vocoder (PyPI link) which can also generate Mel spectrograms from raw wav files and back.
But, in other models such as, WaveRNN , VocGAN , WaveGrad There's no clear explanation about wav to Mel spectrograms generation. Do most of these models don't require the wav to Mel spectrograms feature because they largely cater to TTS models like Tacotron? or is it possible that all of these have that feature and I'm just not aware of it?
A clarification would be highly appreciated.
...ANSWER
Answered 2022-Feb-01 at 23:05Check e.g. this part of the MelGAN code: https://github.com/descriptinc/melgan-neurips/blob/master/mel2wav/modules.py#L26
Specifically, the Audio2Mel
module simply uses standard methods to create log-magnitude mel spectrograms like this:
- Compute the STFT by applying the Fourier transform to windows of the input audio,
- Take the magnitude of the resulting complex spectrogram,
- Multiply the magnitude spectrogram by a mel filter matrix. Note that they actually get this matrix from
librosa
! - Take the logarithm of the resulting mel spectrogram.
Your confusion might stem from the fact that, usually, authors of Deep Learning papers only mean their mel-to-audio "decoder" when they talk about "vocoders" -- the audio-to-mel part is always more or less the same. I say this might be confusing since, to my understanding, the classical meaning of the term "vocoder" includes both an encoder and a decoder.
Unfortunately, these methods will not always work exactly in the same manner as there are e.g. different methods to create the mel filter matrix, different padding conventions etc.
For example, librosa.stft
has a center
argument that will pad the audio before applying the STFT, while tensorflow.signal.stft
does not have this (it would require manual padding beforehand).
An example for the different methods to create mel filters would be the htk
argument in librosa.filters.mel
, which switches between the "HTK" method and "Slaney". Again taking Tensorflow as an example, tf.signal.linear_to_mel_weight_matrix
does not support this argument and always uses the HTK method. Unfortunately, I am not familiar with torchaudio
, so I don't know if you need to be careful there, as well.
Finally, there are of course many parameters such as the STFT window size, hop length, the frequencies covered by the mel filters etc, and changing these relative to what a reference implementation used may impact your results. Since different code repositories likely use slightly different parameters, I suppose the answer to your question "will every method do the operation(to create a mel spectrogram) in the same manner?" is "not really". At the end of the day, you will have to settle for one set of parameters either way...
Bonus: Why are these all only decoders and the encoder is always the same?The direction Mel -> Audio is hard. Not even Mel -> ("normal") spectrogram is well-defined since the conversion to mel spectrum is lossy and cannot be inverted. Finally, converting a spectrogram to audio is difficult since the phase needs to be estimated. You may be familiar with methods like Griffin-Lim (again, librosa has it so you can try it out). These produce noisy, low-quality audio. So the research focuses on improving this process using powerful models.
On the other hand, Audio -> Mel is simple, well-defined and fast. There is no need to define "custom encoders".
Now, a whole different question is whether mel spectrograms are a "good" encoding. Using methods like variational autoencoders, you could perhaps find better (e.g. more compact, less lossy) audio encodings. These would include custom encoders and decoders and you would not get away with standard librosa functions...
QUESTION
I am executing my test configuration and this is the error I am facing. I have a trained model of size 327mb and layers of 250mb required for the inference of my Text To Speech trained model. So the size of model and layers might be the reason?? Please help me clarify and provide a solution. I am importing the trained model from s3 bucket and then loading it for the further processing. HERE IS THE CODE AND ERROR.
...ANSWER
Answered 2021-Jun-30 at 13:56AWS Lambdas local storage in /tmp
is only 512MB
. You are apparently exceeding this limit.
There are five solutions I can think of:
- Mount a EFS volume (which already contains your trained model) to the Lambda.
- Reduce the size of your model.
- Stream the model in chunks to your Lambda (might be hard).
- Not use Lambda (maybe just a plain EC2 or EKS).
- Use a Docker container that already contains your model as Lambda.
It is hard to tell what the best solution for you is, since so much information is missing. But those solutions should give you a good starting point.
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install waveglow
You can use waveglow like any standard Python library. You will need to make sure that you have a development environment consisting of a Python distribution including header files, a compiler, pip, and git installed. Make sure that your pip, setuptools, and wheel are up to date. When using pip it is generally recommended to install packages in a virtual environment to avoid changes to the system.
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page