MAMS-for-ABSA | Aspect Multi-Sentiment Dataset | Predictive Analytics library

 by   siat-nlp Python Version: Current License: Apache-2.0

kandi X-RAY | MAMS-for-ABSA Summary

kandi X-RAY | MAMS-for-ABSA Summary

MAMS-for-ABSA is a Python library typically used in Analytics, Predictive Analytics, Pytorch, Bert applications. MAMS-for-ABSA has no bugs, it has no vulnerabilities, it has a Permissive License and it has low support. However MAMS-for-ABSA build file is not available. You can download it from GitHub.

A Multi-Aspect Multi-Sentiment Dataset for aspect-based sentiment analysis.
Support
    Quality
      Security
        License
          Reuse

            kandi-support Support

              MAMS-for-ABSA has a low active ecosystem.
              It has 144 star(s) with 43 fork(s). There are 6 watchers for this library.
              OutlinedDot
              It had no major release in the last 6 months.
              There are 6 open issues and 1 have been closed. There are no pull requests.
              It has a neutral sentiment in the developer community.
              The latest version of MAMS-for-ABSA is current.

            kandi-Quality Quality

              MAMS-for-ABSA has 0 bugs and 23 code smells.

            kandi-Security Security

              MAMS-for-ABSA has no vulnerabilities reported, and its dependent libraries have no vulnerabilities reported.
              MAMS-for-ABSA code analysis shows 0 unresolved vulnerabilities.
              There are 0 security hotspots that need review.

            kandi-License License

              MAMS-for-ABSA is licensed under the Apache-2.0 License. This license is Permissive.
              Permissive licenses have the least restrictions, and you can use them in most projects.

            kandi-Reuse Reuse

              MAMS-for-ABSA releases are not available. You will need to build from source code and install.
              MAMS-for-ABSA has no build file. You will be need to create the build yourself to build the component from source.
              Installation instructions, examples and code snippets are available.
              MAMS-for-ABSA saves you 61925 person hours of effort in developing the same functionality from scratch.
              It has 70393 lines of code, 95 functions and 41 files.
              It has medium code complexity. Code complexity directly impacts maintainability of the code.

            Top functions reviewed by kandi - BETA

            kandi has reviewed MAMS-for-ABSA and discovered the below as its top functions. This is intended to give you an instant insight into MAMS-for-ABSA implemented functionality, and help decide if they suit your requirements.
            • Train the model
            • Create dataset data
            • Evaluate the model
            • Create training and validation datasets
            • Process the data
            • Get the vocab
            • Builds a vocabulary
            • Add a word
            • Convert a BERT token to a single layer
            • Calculate attention weights
            • Calculate the category mapped to a given guide
            • Normalizes the score
            • Forward a sentence
            • Calculates the purpose of this route
            • Clip a sentence
            • Forward computation
            • Calculate the entropy of a term
            • Perform the analysis of a category
            • Make a model from the given configuration
            • Create a RecurrentCapsuleNetwork
            • Make a BertCapsule network
            • Load sentiment from file
            • Loads sentiment from file
            • Compute the loss of a label
            • Convert a label to one hot label
            Get all kandi verified functions for this library.

            MAMS-for-ABSA Key Features

            No Key Features are available at this moment for MAMS-for-ABSA.

            MAMS-for-ABSA Examples and Code Snippets

            No Code Snippets are available at this moment for MAMS-for-ABSA.

            Community Discussions

            QUESTION

            will TensorFlow utilize GPU for predictive Analysis?
            Asked 2020-Nov-21 at 21:35

            GPU is good for parallel computing but the problem is some machine learning libraries don't utilize the GPU, unless that machine learning based on image processing or some sort of graphics processing, what if I am using machine learning for predictive Analytics? do libraries like TensorFlow utilize the GPU? or they use only CPU? or can I choose which processing unit to use? whats the deal here?

            note: predictive Analysis requires no graphics processing.

            ...

            ANSWER

            Answered 2020-Nov-21 at 21:35
            The short answer: yes, it will! The slightly longer answer:

            The computation that happens in the GPU in any of the machine learning frameworks that support GPUs is not limited to graphical processing. For instance, if your model is a simple logistic regression, a framework such as TensorFlow will run it on the GPU if properly configured.

            The advantage of GPUs for machine learning is that training big neural networks benefits greatly from the high level of parallelism that the GPUs offer.

            If you want to know more about this, I'd recommend you start here or here.

            some things to consider:
            • how much a model will benefit from running in the GPU will depend on how much it will benefit from parallel computation in general.
            • Deep Learning models can be applied to predictive analytics, as well as more classical machine learning models. Bear in mind that neural nets are possibly the category of models that will benefit inherently from the GPU (see links above).
            • Even though running models using GPUs (or even more specialised hardware) can bring benefits, I would suggest that you don't choose a framework and, especially, don't choose an algorithm based solely on the fact that it will benefit from parallelism, but rather look at how appropriate a given algorithm is for the data you have.

            Source https://stackoverflow.com/questions/64948197

            QUESTION

            Restructuring Pandas Dataframe for large number of columns
            Asked 2020-Nov-01 at 19:39

            I have a pandas dataframe which is a large number of answers given by users in response to a survey and I need to re-structure it. There are up to 105 questions asked each year, but I only need maybe 20 of them.

            The current structure is as below.

            What I want to do is re-structure it so that the row values become column names and the answer given by the user is then the value in that column. In a picture (from Excel), what I want is the below (I know I'll need to re-name my columns, but that's fine once I can create the structure in the first place):

            Is it possible to re-structure my dataframe this way? The outcome of this is to use some predictive analytics to predict a target variable, so I need to re-strcture before I can use Random Forest, kNN, and so on.

            ...

            ANSWER

            Answered 2020-Nov-01 at 19:39

            You might want try pivoting your table:

            Source https://stackoverflow.com/questions/64630691

            QUESTION

            Display data from two json files in react native
            Asked 2020-May-17 at 23:55

            I have js files Dashboard and Adverts. I managed to get Dashboard to list the information in one json file (advertisers), but when clicking on an advertiser I want it to navigate to a separate page that will display some data (Say title and text) from the second json file (productadverts). I can't get it to work. Below is the code for the Dashboard and next for Adverts. Then the json files

            ...

            ANSWER

            Answered 2020-May-17 at 23:55

            The new object to get params in React Navigation 5 is:

            Source https://stackoverflow.com/questions/61859411

            Community Discussions, Code Snippets contain sources that include Stack Exchange Network

            Vulnerabilities

            No vulnerabilities reported

            Install MAMS-for-ABSA

            Put the pretrained GloVe(http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip) file glove.840B.300d.txt in folder ./data. Modify config.py to select task, model and hyper-parameters. When mode is set to term, base_path should point to an ATSA dataset. When mode is set to category, base_path should point to an ACSA dataset.

            Support

            For any new features, suggestions and bugs create an issue on GitHub. If you have any questions check and ask questions on community page Stack Overflow .
            Find more information at:

            Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items

            Find more libraries
            CLONE
          • HTTPS

            https://github.com/siat-nlp/MAMS-for-ABSA.git

          • CLI

            gh repo clone siat-nlp/MAMS-for-ABSA

          • sshUrl

            git@github.com:siat-nlp/MAMS-for-ABSA.git

          • Stay Updated

            Subscribe to our newsletter for trending solutions and developer bootcamps

            Agree to Sign up and Terms & Conditions

            Share this Page

            share link