Calendr | Menu bar calendar for macOS | Menu library
kandi X-RAY | Calendr Summary
kandi X-RAY | Calendr Summary
Menu bar calendar for macOS.
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of Calendr
Calendr Key Features
Calendr Examples and Code Snippets
Community Discussions
Trending Discussions on Calendr
QUESTION
I am trying to install the calendR package on colab.
I am using the following:
...ANSWER
Answered 2021-Nov-12 at 15:51Google colab uses Python 3 Google Compute Engine backend based on docker container with ubuntu 18.04 by default.
It is designed for python and has the ipython kernel.
However, There is R installed as well.
To install calendR
, create and run a new cell with this content:
QUESTION
I have a vector of dates with a certain amount of visits per date and the specific type of visit.
Data (the 'ficol' column can be ignored):
...ANSWER
Answered 2021-Apr-13 at 13:15library(tidyverse)
library(lubridate)
library(assertr)
library(calendR)
df <- structure(c("2021-06-15", "15", "60", "T0s", "2021-06-16", "15",
"60", "T0s", "2021-06-17", " 8", "32", "T0s", "2021-06-21", "15",
"60", "T0s", "2021-06-22", "15", "60", "T0s", "2021-06-23", "15",
"60", "T0s", "2021-06-24", "15", "60", "T0s", "2021-06-28", "15",
"60", "T0s", "2021-06-29", "15", "60", "T0s", "2021-06-30", "15",
"60", "T0s", "2021-07-01", "15", "60", "T0s", "2021-07-05", "15",
"60", "T0s", "2021-07-06", "15", "60", "T0s", "2021-07-07", "15",
"60", "T0s", "2021-07-08", "15", "60", "T0s", "2021-07-12", "15",
"60", "T0s", "2021-07-13", "15", "60", "T0s", "2021-07-14", "15",
"60", "T0s", "2021-07-15", "15", "60", "T0s", "2021-07-19", "15",
"60", "T0s", "2021-07-20", "15", "60", "T0s", "2021-07-21", "15",
"60", "T0s", "2021-07-22", "15", "60", "T0s", "2021-07-26", "15",
"60", "T0s", "2021-07-27", "15", "60", "T0s", "2021-07-28", "15",
"60", "T0s", "2021-07-29", "15", "60", "T0s", "2021-06-30", "30",
"60", "T1s", "2021-07-01", " 8", "16", "T1s", "2021-07-05", "26",
"52", "T1s", "2021-07-06", "30", "60", "T1s", "2021-07-07", "30",
"60", "T1s", "2021-07-08", " 4", " 8", "T1s", "2021-07-12", " 4",
" 8", "T1s", "2021-07-13", "29", "58", "T1s", "2021-07-14", "27",
"54", "T1s", "2021-07-20", "30", "60", "T1s", "2021-07-21", "30",
"60", "T1s", "2021-07-26", "30", "60", "T1s", "2021-07-27", "30",
"60", "T1s", "2021-07-28", "30", "60", "T1s", "2021-08-02", "30",
"60", "T1s", "2021-08-03", " 8", "16", "T1s", "2021-08-23", "12",
"60", "T3s", "2021-08-24", "12", "60", "T3s", "2021-08-25", "12",
"60", "T3s", "2021-08-26", " 2", "10", "T3s", "2021-08-30", "12",
"60", "T3s", "2021-08-31", "12", "60", "T3s", "2021-09-01", "12",
"60", "T3s", "2021-09-06", "12", "60", "T3s", "2021-09-07", "12",
"60", "T3s", "2021-09-08", "12", "60", "T3s", "2021-09-13", "12",
"60", "T3s", "2021-09-14", "12", "60", "T3s", "2021-09-15", "12",
"60", "T3s", "2021-09-16", "12", "60", "T3s", "2021-09-20", "12",
"60", "T3s", "2021-09-21", "12", "60", "T3s", "2021-09-22", "12",
"60", "T3s", "2021-09-23", "12", "60", "T3s", "2021-09-27", "12",
"60", "T3s", "2022-01-10", "15", "60", "T5s", "2022-01-11", "15",
"60", "T5s", "2022-01-12", " 8", "32", "T5s", "2022-01-17", "15",
"60", "T5s", "2022-01-18", "15", "60", "T5s", "2022-01-19", " 6",
"24", "T5s", "2022-01-24", "15", "60", "T5s", "2022-01-25", "15",
"60", "T5s", "2022-01-26", " 6", "24", "T5s", "2022-01-31", "15",
"60", "T5s", "2022-02-01", "15", "60", "T5s", "2022-02-02", " 6",
"24", "T5s", "2022-02-03", "12", "48", "T5s", "2022-02-07", "15",
"60", "T5s", "2022-02-08", "15", "60", "T5s", "2022-02-09", " 6",
"24", "T5s", "2022-02-10", "15", "60", "T5s", "2022-02-14", " 9",
"36", "T5s"), .Dim = c(4L, 80L), .Dimnames = list(c("Var1", "Freq",
"ficol", "visit"), NULL))
df1 <- df %>%
t() %>%
as_tibble() %>%
mutate(
Var1 = ymd(Var1),
Freq = as.integer(Freq),
ficol = as.integer(ficol)) %>%
rename(date = Var1) %>%
arrange(date)
df2 <- df1 %>%
filter(year(date) == 2021) # choose only 1 year
df2
#> # A tibble: 62 x 4
#> date Freq ficol visit
#>
#> 1 2021-06-15 15 60 T0s
#> 2 2021-06-16 15 60 T0s
#> 3 2021-06-17 8 32 T0s
#> 4 2021-06-21 15 60 T0s
#> 5 2021-06-22 15 60 T0s
#> 6 2021-06-23 15 60 T0s
#> 7 2021-06-24 15 60 T0s
#> 8 2021-06-28 15 60 T0s
#> 9 2021-06-29 15 60 T0s
#> 10 2021-06-30 15 60 T0s
#> # ... with 52 more rows
# some days have many types of visits, so it's necessary to group them
df3 <- df2 %>%
group_by(date) %>%
summarise(visits = str_c(sort(visit), collapse = ", "),
.groups = "drop")
df3
#> # A tibble: 48 x 2
#> date visits
#>
#> 1 2021-06-15 T0s
#> 2 2021-06-16 T0s
#> 3 2021-06-17 T0s
#> 4 2021-06-21 T0s
#> 5 2021-06-22 T0s
#> 6 2021-06-23 T0s
#> 7 2021-06-24 T0s
#> 8 2021-06-28 T0s
#> 9 2021-06-29 T0s
#> 10 2021-06-30 T0s, T1s
#> # ... with 38 more rows
df3 %>%
count(visits)
#> # A tibble: 4 x 2
#> visits n
#>
#> 1 T0s 13
#> 2 T0s, T1s 14
#> 3 T1s 2
#> 4 T3s 19
df4 <- df3 %>%
mutate(color = case_when(
visits == "T0s" ~ "red",
visits == "T0s, T1s" ~ "orange",
visits == "T1s" ~ "yellow",
visits == "T3s" ~ "green"
)) %>%
assertr::verify(!is.na(color)) %>%
full_join(
tibble(date = seq(as.Date("2021-01-01"), as.Date("2022-01-01") - 1, by = "days")),
by = "date"
) %>%
mutate(yday = lubridate::yday(date)) %>%
arrange(date)
df4 %>%
filter(!is.na(visits))
#> # A tibble: 48 x 4
#> date visits color yday
#>
#> 1 2021-06-15 T0s red 166
#> 2 2021-06-16 T0s red 167
#> 3 2021-06-17 T0s red 168
#> 4 2021-06-21 T0s red 172
#> 5 2021-06-22 T0s red 173
#> 6 2021-06-23 T0s red 174
#> 7 2021-06-24 T0s red 175
#> 8 2021-06-28 T0s red 179
#> 9 2021-06-29 T0s red 180
#> 10 2021-06-30 T0s, T1s orange 181
#> # ... with 38 more rows
calendR::calendR(year = 2021,
start = "M",
special.days = df4$visits,
special.col = unique(na.omit(df4$color)),
legend.pos = "right")
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install Calendr
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page