FasterTransformer | Transformer related optimization , including BERT , GPT | Machine Learning library

 by   NVIDIA C++ Version: release/v5.3_tag License: Apache-2.0

kandi X-RAY | FasterTransformer Summary

kandi X-RAY | FasterTransformer Summary

FasterTransformer is a C++ library typically used in Artificial Intelligence, Machine Learning, Deep Learning, Pytorch, Tensorflow, Bert applications. FasterTransformer has no bugs, it has no vulnerabilities, it has a Permissive License and it has medium support. You can download it from GitHub.

In NLP, encoder and decoder are two important components, with the transformer layer becoming a popular architecture for both components. FasterTransformer implements a highly optimized transformer layer for both the encoder and decoder for inference. On Volta, Turing and Ampere GPUs, the computing power of Tensor Cores are used automatically when the precision of the data and weights are FP16. FasterTransformer v1.0 provides a highly optimized BERT equivalent Transformer layer for inference, including C++ API, TensorFlow op and TensorRT plugin. The experiments show that FasterTransformer v1 can provide 1.3 ~ 2 times speedup on NVIDIA Tesla T4 and NVIDIA Tesla V100 for inference. In FasterTransformer v2.0, we have added a highly optimized decoder and decoding models based on OpenNMT-TF, an open-source library. Here, the decoder is the model that contains some transformer layers. On the other hand, decoding refers to the whole translating process, including the lookup embedding table, position encoding, a decoder and beam search. In FasterTransformer v2.1, we add some important features. First one is the supporting on PyTorch. Recently, there are more and more PyTorch users. We hope the users of PyTorch can also use the FasterTransformer in their application and research. The second feature is the supporting of Effective Transformer. This idea is proposed by ByteDance. We call this feature as Effective FasterTransformer It removes the useless padding of encoder input to reduce the computing cost. Third, in addition to decoding with beam search, we also provide the decoding with sampling module. Finally, we optimize many kernels of encoder, decoder and beam search to improve the speed of FasterTransformer. In FasterTransformer v3.0, we implemented the INT8 quantization for encoder (also supporting Effective FasterTransformer). With INT8 quantization, we can take advantage of the powerful INT8 tensor core in Turing GPU to achieve better inference performance (INT8 quantization in FT 3.0 is only supported on device with SM >= 7.5). We also provide quantization tools of tensorflow. In FasterTransformer v3.1, we provide following new features and enhancements. First, we optimize the INT8 kernel of encoder to achieve better performance. Compare to FasterTransformer v3.0, the performance of INT8 quantization brings at most 1.75x speedup. Second, we provide a PyTorch tool to let user be able to train a INT8 quantized model on PyTorch. Besides, FasterTransformer also starts to support the INT8 inference with PyTorch op. So, the users of PyTorch can leverage the INT8 inference. Third, we integrate the fused multi-head attention kernel of TensorRT plugin into FasterTransformer to improve the speed of encoder on Turing and new GPUs. This optimization can bring about 10% ~ 20% speedup compare to original implementation. Finally, we add the supporting of GPT-2 model, which is an important and popular model for decoder. In FasterTransformer v4.0, we provide the multi-nodes multi-gpu inference for GPT model. Compare to usual framework to train giant model like Megatron, FasterTransformer provides 1.2x ~ 3x speedup. Besides, integrating the INT8 fused multi-head attention kernel of TensorRT plugin to further improve the performance of FasterTransformer encoder on INT8. We also add supporting of FP16 fused multi-head attention kernel for V100. Finally, we optimize the decoding module. Compare to v3.1, v4.0 provides at most 2x speedup. The following graph demonstrates the model architecture. FasterTransformer is built on top of CUDA, cuBLAS and cuBLASLt, providing the C++ API and TensorFlow/PyTorch OPs. Users can integrate them into TensorFlow, PyTorch, or other inference service codes that are built in native C++. We also provide some simple sample code to demonstrate how to use the encoder, decoder and to carry out decoding in C++, TensorFlow and PyTorch. More details are in docs/encoder_guide.md, docs/decoder_guide.md and docs/gpt_guide.md. Some common questions and the respective answers are put in docs/QAList.md.
Support
    Quality
      Security
        License
          Reuse

            kandi-support Support

              FasterTransformer has a medium active ecosystem.
              It has 3661 star(s) with 621 fork(s). There are 57 watchers for this library.
              OutlinedDot
              It had no major release in the last 12 months.
              There are 169 open issues and 355 have been closed. On average issues are closed in 10 days. There are 26 open pull requests and 0 closed requests.
              It has a neutral sentiment in the developer community.
              The latest version of FasterTransformer is release/v5.3_tag

            kandi-Quality Quality

              FasterTransformer has no bugs reported.

            kandi-Security Security

              FasterTransformer has no vulnerabilities reported, and its dependent libraries have no vulnerabilities reported.

            kandi-License License

              FasterTransformer is licensed under the Apache-2.0 License. This license is Permissive.
              Permissive licenses have the least restrictions, and you can use them in most projects.

            kandi-Reuse Reuse

              FasterTransformer releases are available to install and integrate.
              Installation instructions, examples and code snippets are available.

            Top functions reviewed by kandi - BETA

            kandi's functional review helps you automatically verify the functionalities of the libraries and avoid rework.
            Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of FasterTransformer
            Get all kandi verified functions for this library.

            FasterTransformer Key Features

            No Key Features are available at this moment for FasterTransformer.

            FasterTransformer Examples and Code Snippets

            No Code Snippets are available at this moment for FasterTransformer.

            Community Discussions

            QUESTION

            Using RNN Trained Model without pytorch installed
            Asked 2022-Feb-28 at 20:17

            I have trained an RNN model with pytorch. I need to use the model for prediction in an environment where I'm unable to install pytorch because of some strange dependency issue with glibc. However, I can install numpy and scipy and other libraries. So, I want to use the trained model, with the network definition, without pytorch.

            I have the weights of the model as I save the model with its state dict and weights in the standard way, but I can also save it using just json/pickle files or similar.

            I also have the network definition, which depends on pytorch in a number of ways. This is my RNN network definition.

            ...

            ANSWER

            Answered 2022-Feb-17 at 10:47

            You should try to export the model using torch.onnx. The page gives you an example that you can start with.

            An alternative is to use TorchScript, but that requires torch libraries.

            Both of these can be run without python. You can load torchscript in a C++ application https://pytorch.org/tutorials/advanced/cpp_export.html

            ONNX is much more portable and you can use in languages such as C#, Java, or Javascript https://onnxruntime.ai/ (even on the browser)

            A running example

            Just modifying a little your example to go over the errors I found

            Notice that via tracing any if/elif/else, for, while will be unrolled

            Source https://stackoverflow.com/questions/71146140

            QUESTION

            Flux.jl : Customizing optimizer
            Asked 2022-Jan-25 at 07:58

            I'm trying to implement a gradient-free optimizer function to train convolutional neural networks with Julia using Flux.jl. The reference paper is this: https://arxiv.org/abs/2005.05955. This paper proposes RSO, a gradient-free optimization algorithm updates single weight at a time on a sampling bases. The pseudocode of this algorithm is depicted in the picture below.

            optimizer_pseudocode

            I'm using MNIST dataset.

            ...

            ANSWER

            Answered 2022-Jan-14 at 23:47

            Based on the paper you shared, it looks like you need to change the weight arrays per each output neuron per each layer. Unfortunately, this means that the implementation of your optimization routine is going to depend on the layer type, since an "output neuron" for a convolution layer is quite different than a fully-connected layer. In other words, just looping over Flux.params(model) is not going to be sufficient, since this is just a set of all the weight arrays in the model and each weight array is treated differently depending on which layer it comes from.

            Fortunately, Julia's multiple dispatch does make this easier to write if you use separate functions instead of a giant loop. I'll summarize the algorithm using the pseudo-code below:

            Source https://stackoverflow.com/questions/70641453

            QUESTION

            How can I check a confusion_matrix after fine-tuning with custom datasets?
            Asked 2021-Nov-24 at 13:26

            This question is the same with How can I check a confusion_matrix after fine-tuning with custom datasets?, on Data Science Stack Exchange.

            Background

            I would like to check a confusion_matrix, including precision, recall, and f1-score like below after fine-tuning with custom datasets.

            Fine tuning process and the task are Sequence Classification with IMDb Reviews on the Fine-tuning with custom datasets tutorial on Hugging face.

            After finishing the fine-tune with Trainer, how can I check a confusion_matrix in this case?

            An image of confusion_matrix, including precision, recall, and f1-score original site: just for example output image

            ...

            ANSWER

            Answered 2021-Nov-24 at 13:26

            What you could do in this situation is to iterate on the validation set(or on the test set for that matter) and manually create a list of y_true and y_pred.

            Source https://stackoverflow.com/questions/68691450

            QUESTION

            CUDA OOM - But the numbers don't add upp?
            Asked 2021-Nov-23 at 06:13

            I am trying to train a model using PyTorch. When beginning model training I get the following error message:

            RuntimeError: CUDA out of memory. Tried to allocate 5.37 GiB (GPU 0; 7.79 GiB total capacity; 742.54 MiB already allocated; 5.13 GiB free; 792.00 MiB reserved in total by PyTorch)

            I am wondering why this error is occurring. From the way I see it, I have 7.79 GiB total capacity. The numbers it is stating (742 MiB + 5.13 GiB + 792 MiB) do not add up to be greater than 7.79 GiB. When I check nvidia-smi I see these processes running

            ...

            ANSWER

            Answered 2021-Nov-23 at 06:13

            This is more of a comment, but worth pointing out.

            The reason in general is indeed what talonmies commented, but you are summing up the numbers incorrectly. Let's see what happens when tensors are moved to GPU (I tried this on my PC with RTX2060 with 5.8G usable GPU memory in total):

            Let's run the following python commands interactively:

            Source https://stackoverflow.com/questions/70074789

            QUESTION

            How to compare baseline and GridSearchCV results fair?
            Asked 2021-Nov-04 at 21:17

            I am a bit confusing with comparing best GridSearchCV model and baseline.
            For example, we have classification problem.
            As a baseline, we'll fit a model with default settings (let it be logistic regression):

            ...

            ANSWER

            Answered 2021-Nov-04 at 21:17

            No, they aren't comparable.

            Your baseline model used X_train to fit the model. Then you're using the fitted model to score the X_train sample. This is like cheating because the model is going to already perform the best since you're evaluating it based on data that it has already seen.

            The grid searched model is at a disadvantage because:

            1. It's working with less data since you have split the X_train sample.
            2. Compound that with the fact that it's getting trained with even less data due to the 5 folds (it's training with only 4/5 of X_val per fold).

            So your score for the grid search is going to be worse than your baseline.

            Now you might ask, "so what's the point of best_model.best_score_? Well, that score is used to compare all the models used when searching for the optimal hyperparameters in your search space, but in no way should be used to compare against a model that was trained outside of the grid search context.

            So how should one go about conducting a fair comparison?

            1. Split your training data for both models.

            Source https://stackoverflow.com/questions/69844028

            QUESTION

            Getting Error 524 while running jupyter lab in google cloud platform
            Asked 2021-Oct-15 at 02:14

            I am not able to access jupyter lab created on google cloud

            I created one notebook using Google AI platform. I was able to start it and work but suddenly it stopped and I am not able to start it now. I tried building and restarting the jupyterlab, but of no use. I have checked my disk usages as well, which is only 12%.

            I tried the diagnostic tool, which gave the following result:

            but didn't fix it.

            Thanks in advance.

            ...

            ANSWER

            Answered 2021-Aug-20 at 14:00

            QUESTION

            TypeError: brain.NeuralNetwork is not a constructor
            Asked 2021-Sep-29 at 22:47

            I am new to Machine Learning.

            Having followed the steps in this simple Maching Learning using the Brain.js library, it beats my understanding why I keep getting the error message below:

            I have double-checked my code multiple times. This is particularly frustrating as this is the very first exercise!

            Kindly point out what I am missing here!

            Find below my code:

            ...

            ANSWER

            Answered 2021-Sep-29 at 22:47

            Turns out its just documented incorrectly.

            In reality the export from brain.js is this:

            Source https://stackoverflow.com/questions/69348213

            QUESTION

            Ordinal Encoding or One-Hot-Encoding
            Asked 2021-Sep-04 at 06:43

            IF we are not sure about the nature of categorical features like whether they are nominal or ordinal, which encoding should we use? Ordinal-Encoding or One-Hot-Encoding? Is there a clearly defined rule on this topic?

            I see a lot of people using Ordinal-Encoding on Categorical Data that doesn't have a Direction. Suppose a frequency table:

            ...

            ANSWER

            Answered 2021-Sep-04 at 06:43

            You're right. Just one thing to consider for choosing OrdinalEncoder or OneHotEncoder is that does the order of data matter?

            Most ML algorithms will assume that two nearby values are more similar than two distant values. This may be fine in some cases e.g., for ordered categories such as:

            • quality = ["bad", "average", "good", "excellent"] or
            • shirt_size = ["large", "medium", "small"]

            but it is obviously not the case for the:

            • color = ["white","orange","black","green"]

            column (except for the cases you need to consider a spectrum, say from white to black. Note that in this case, white category should be encoded as 0 and black should be encoded as the highest number in your categories), or if you have some cases for example, say, categories 0 and 4 may be more similar than categories 0 and 1. To fix this issue, a common solution is to create one binary attribute per category (One-Hot encoding)

            Source https://stackoverflow.com/questions/69052776

            QUESTION

            How to increase dimension-vector size of BERT sentence-transformers embedding
            Asked 2021-Aug-15 at 13:35

            I am using sentence-transformers for semantic search but sometimes it does not understand the contextual meaning and returns wrong result eg. BERT problem with context/semantic search in italian language

            by default the vector side of embedding of the sentence is 78 columns, so how do I increase that dimension so that it can understand the contextual meaning in deep.

            code:

            ...

            ANSWER

            Answered 2021-Aug-10 at 07:39

            Increasing the dimension of a trained model is not possible (without many difficulties and re-training the model). The model you are using was pre-trained with dimension 768, i.e., all weight matrices of the model have a corresponding number of trained parameters. Increasing the dimensionality would mean adding parameters which however need to be learned.

            Also, the dimension of the model does not reflect the amount of semantic or context information in the sentence representation. The choice of the model dimension reflects more a trade-off between model capacity, the amount of training data, and reasonable inference speed.

            If the model that you are using does not provide representation that is semantically rich enough, you might want to search for better models, such as RoBERTa or T5.

            Source https://stackoverflow.com/questions/68686272

            QUESTION

            How to identify what features affect predictions result?
            Asked 2021-Aug-11 at 15:55

            I have a table with features that were used to build some model to predict whether user will buy a new insurance or not. In the same table I have probability of belonging to the class 1 (will buy) and class 0 (will not buy) predicted by this model. I don't know what kind of algorithm was used to build this model. I only have its predicted probabilities.

            Question: how to identify what features affect these prediction results? Do I need to build correlation matrix or conduct any tests?

            Table example:

            ...

            ANSWER

            Answered 2021-Aug-11 at 15:55

            You could build a model like this.

            x = features you have. y = true_lable

            from that you can extract features importance. also, if you want to go the extra mile,you can do Bootstrapping, so that the features importance would be more stable (statistical).

            Source https://stackoverflow.com/questions/68744565

            Community Discussions, Code Snippets contain sources that include Stack Exchange Network

            Vulnerabilities

            No vulnerabilities reported

            Install FasterTransformer

            The following section lists the requirements to use FasterTransformer.
            The following section shows how to use FasterTransformer on the NGC container.
            You can choose the tensorflow version and python version you want. Here, we list some possible images:. To achieve best performance, we recommand to use the latest image. For example, running image nvcr.io/nvidia/tensorflow:20.12-tf1-py3 by. 3.1 build with C++. Note: xx is the compute capability of your GPU. For example, 60 (P40) or 61 (P4) or 70 (V100) or 75(T4) or 80 (A100). 3.2 build with TensorFlow. Uses need to set the path of TensorFlow. For example, if we use nvcr.io/nvidia/tensorflow:20.12-tf1-py3, then. Note: xx is the compute capability of your GPU. For example, 60 (P40) or 61 (P4) or 70 (V100) or 75(T4) or 80 (A100). 3.3 build with PyTorch. Note: xx is the compute capability of your GPU. For example, 60 (P40) or 61 (P4) or 70 (V100) or 75(T4) or 80 (A100). This will build the TorchScript custom class. Please make sure that the PyTorch >= 1.5.0. Note: From FasterTransformer 3.1, TorchScript custom op (function type) is deprecated. From FasterTransformer 4.0, Eager mode PyTorch extension is deprecated.
            Run the container. You can choose the tensorflow version and python version you want. Here, we list some possible images: nvcr.io/nvidia/tensorflow:19.07-py2 contains the TensorFlow 1.14 and python 2.7. nvcr.io/nvidia/tensorflow:20.12-tf1-py3 contains the TensorFlow 1.15 and python 3.8. nvcr.io/nvidia/pytorch:20.03-py3 contains the PyTorch 1.5.0 and python 3.6 nvcr.io/nvidia/pytorch:20.07-py3 contains the PyTorch 1.6.0 and python 3.6 nvcr.io/nvidia/pytorch:20.12-py3 contains the PyTorch 1.8.0 and python 3.8 To achieve best performance, we recommand to use the latest image. For example, running image nvcr.io/nvidia/tensorflow:20.12-tf1-py3 by nvidia-docker run -ti --rm nvcr.io/nvidia/tensorflow:20.12-tf1-py3 bash
            Clone the repository. git clone https://github.com/NVIDIA/FasterTransformer.git cd FasterTransformer mkdir -p build cd build
            Build the project. 3.1 build with C++ cmake -DSM=xx -DCMAKE_BUILD_TYPE=Release .. make Note: xx is the compute capability of your GPU. For example, 60 (P40) or 61 (P4) or 70 (V100) or 75(T4) or 80 (A100). 3.2 build with TensorFlow Uses need to set the path of TensorFlow. For example, if we use nvcr.io/nvidia/tensorflow:20.12-tf1-py3, then cmake -DSM=xx -DCMAKE_BUILD_TYPE=Release -DBUILD_TF=ON -DTF_PATH=/usr/local/lib/python3.8/dist-packages/tensorflow_core/ .. make Note: xx is the compute capability of your GPU. For example, 60 (P40) or 61 (P4) or 70 (V100) or 75(T4) or 80 (A100). 3.3 build with PyTorch cmake -DSM=xx -DCMAKE_BUILD_TYPE=Release -DBUILD_PYT=ON .. make Note: xx is the compute capability of your GPU. For example, 60 (P40) or 61 (P4) or 70 (V100) or 75(T4) or 80 (A100). This will build the TorchScript custom class. Please make sure that the PyTorch >= 1.5.0. Note: From FasterTransformer 3.1, TorchScript custom op (function type) is deprecated. From FasterTransformer 4.0, Eager mode PyTorch extension is deprecated.

            Support

            The following matrix shows the architecture differences between the model.
            Find more information at:

            Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items

            Find more libraries
            CLONE
          • HTTPS

            https://github.com/NVIDIA/FasterTransformer.git

          • CLI

            gh repo clone NVIDIA/FasterTransformer

          • sshUrl

            git@github.com:NVIDIA/FasterTransformer.git

          • Stay Updated

            Subscribe to our newsletter for trending solutions and developer bootcamps

            Agree to Sign up and Terms & Conditions

            Share this Page

            share link