Q-GridWorld | Demo project using tabular Q-learning algorithm | Reinforcement Learning library
kandi X-RAY | Q-GridWorld Summary
kandi X-RAY | Q-GridWorld Summary
In the simplest scenario, we have a 5x5 grid world with an agent (blue block), a goal (green block) and obstacles (red blocks). For each run of the demo, the positions of the agent, goal and obstacles are all selected at random (but remain consistent throughout the same demo run). In this grid world setting, the goal of the agent is to learn a strategy to navigate from its start position to the goal position efficiently while avoiding obstacles. It achieves this by learning the best action to take for every state it is in (typically called a policy in reinforcement learning). An action here is a direction to move (north, south, east and west), while a state here is its position in the grid world. It essentially learns the shortest, obstacle-free path from its start position to the goal position. The Q-learning algorithm implemented here learns the policy by maintaining a numeric value for each action-state pair that represents how favourable it is to take a specific action when in a specific state. This numeric value for every action-state pair is incrementally updated as the agent explores the grid world. Intuitively, it performs several trials, where a trial is a series of actions that either end at an obstacle or the goal position. Then for each action-state pair it performed throughout the trial it increments its value if it were a positive trial (ended in the goal position), and decrements its value if it were a negative trial (collided with an obstacle). The agent is also given a small negative reward for each step it takes to encourage it to discover the shortest path. Similar to our earlier multi-armed bandit demo, there is an exploration-exploitation trade-off here. When the agent is running through a trial it mixes between randomly picking actions and following its current guess of the best action to take when in a given state. This trade-off is controlled by an epsilon parameter that begins at 1 (encouraging full exploration) and throughout the trials is slowly decremented to 0.1 (limiting exploration). Consequently, as you run the demo you will notice that as the demo goes on, and the epsilon value declines, the agents actions become more and more predictable, converging to the optimal path from its start position to the goal position. For more information on how the agent learns the strategy, check out our corresponding post in the Unity AI blog. Beyond this demo, check out our Unity ML Agents repo which contains an SDK for applying more advanced methods to training behaviors within Unity.
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of Q-GridWorld
Q-GridWorld Key Features
Q-GridWorld Examples and Code Snippets
Community Discussions
Trending Discussions on Reinforcement Learning
QUESTION
I want to compile my DQN Agent but I get error:
AttributeError: 'Adam' object has no attribute '_name'
,
ANSWER
Answered 2022-Apr-16 at 15:05Your error came from importing Adam
with from keras.optimizer_v1 import Adam
, You can solve your problem with tf.keras.optimizers.Adam
from TensorFlow >= v2
like below:
(The lr
argument is deprecated, it's better to use learning_rate
instead.)
QUESTION
I'm having a hard time wrapping my head around what and when vectorized environments should be used. If you can provide an example of a use case, that would be great.
Documentation of vectorized environments in SB3: https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html
...ANSWER
Answered 2022-Mar-25 at 10:37Vectorized Environments are a method for stacking multiple independent environments into a single environment. Instead of executing and training an agent on 1 environment per step, it allows to train the agent on multiple environments per step.
Usually you also want these environment to have different seeds, in order to gain more diverse experience. This is very useful to speed up training.
I think they are called "vectorized" since each training step the agent observes multiple states (inserted in a vector), outputs multiple actions (one for each environment), which are inserted in a vector, and receives multiple rewards. Hence the "vectorized" term
QUESTION
I'm learning about policy gradients and I'm having hard time understanding how does the gradient passes through a random operation. From here: It is not possible to directly backpropagate through random samples. However, there are two main methods for creating surrogate functions that can be backpropagated through
.
They have an example of the score function
:
ANSWER
Answered 2021-Nov-30 at 05:48It is indeed true that sampling is not a differentiable operation per se. However, there exist two (broad) ways to mitigate this - [1] The REINFORCE way and [2] The reparameterization way. Since your example is related to [1], I will stick my answer to REINFORCE.
What REINFORCE does is it entirely gets rid of sampling operation in the computation graph. However, the sampling operation remains outside the graph. So, your statement
.. how does the gradient passes through a random operation ..
isn't correct. It does not pass through any random operation. Let's see your example
QUESTION
What is the connection between discount factor gamma and horizon in RL.
What I have learned so far is that the horizon is the agent`s time to live. Intuitively, agents with finite horizon will choose actions differently than if it has to live forever. In the latter case, the agent will try to maximize all the expected rewards it may get far in the future.
But the idea of the discount factor is also the same. Are the values of gamma near zero makes the horizon finite?
...ANSWER
Answered 2022-Mar-13 at 17:50Horizon refers to how many steps into the future the agent cares about the reward it can receive, which is a little different from the agent's time to live. In general, you could potentially define any arbitrary horizon you want as the objective. You could define a 10 step horizon, in which the agent makes a decision that will enable it to maximize the reward it will receive in the next 10 time steps. Or we could choose a 100, or 1000, or n step horizon!
Usually, the n-step horizon is defined using n = 1 / (1-gamma). Therefore, 10 step horizon will be achieved using gamma = 0.9, while 100 step horizon can be achieved with gamma = 0.99
Therefore, any value of gamma less than 1 imply that the horizon is finite.
QUESTION
I am trying to set a Deep-Q-Learning agent with a custom environment in OpenAI Gym. I have 4 continuous state variables with individual limits and 3 integer action variables with individual limits.
Here is the code:
...ANSWER
Answered 2021-Dec-23 at 11:19As we talked about in the comments, it seems that the Keras-rl library is no longer supported (the last update in the repository was in 2019), so it's possible that everything is inside Keras now. I take a look at Keras documentation and there are no high-level functions to build a reinforcement learning model, but is possible to use lower-level functions to this.
- Here is an example of how to use Deep Q-Learning with Keras: link
Another solution may be to downgrade to Tensorflow 1.0 as it seems the compatibility problem occurs due to some changes in version 2.0. I didn't test, but maybe the Keras-rl + Tensorflow 1.0 may work.
There is also a branch of Keras-rl to support Tensorflow 2.0, the repository is archived, but there is a chance that it will work for you
QUESTION
Environment:
- Python: 3.9
- OS: Windows 10
When I try to create the ten armed bandits environment using the following code the error is thrown not sure of the reason.
...ANSWER
Answered 2022-Feb-08 at 08:01It could be a problem with your Python version: k-armed-bandits library was made 4 years ago, when Python 3.9 didn't exist. Besides this, the configuration files in the repo indicates that the Python version is 2.7 (not 3.9).
If you create an environment with Python 2.7 and follow the setup instructions it works correctly on Windows:
QUESTION
I have two different problems occurs at the same time.
I am having dimensionality problems with MaxPooling2d and having same dimensionality problem with DQNAgent.
The thing is, I can fix them seperately but cannot at the same time.
First Problem
I am trying to build a CNN network with several layers. After I build my model, when I try to run it, it gives me an error.
...ANSWER
Answered 2022-Feb-01 at 07:31Issue is with input_shape. input_shape=input_shape[1:]
Working sample code
QUESTION
I have this custom callback to log the reward in my custom vectorized environment, but the reward appears in console as always [0] and is not logged in tensorboard at all
...ANSWER
Answered 2021-Dec-25 at 01:10You need to add [0]
as indexing,
so where you wrote self.logger.record('reward', self.training_env.get_attr('total_reward'))
you just need to index with self.logger.record('reward', self.training_env.get_attr ('total_reward')[0]
)
QUESTION
I followed a PyTorch tutorial to learn reinforcement learning(TRAIN A MARIO-PLAYING RL AGENT) but I am confused about the following code:
...ANSWER
Answered 2021-Dec-23 at 11:07Essentially, what happens here is that the output of the net is being sliced to get the desired part of the Q table.
The (somewhat confusing) index of [np.arange(0, self.batch_size), action]
indexes each axis. So, for axis with index 1, we pick the item indicated by action
. For index 0, we pick all items between 0 and self.batch_size
.
If self.batch_size
is the same as the length of dimension 0 of this array, then this slice can be simplified to [:, action]
which is probably more familiar to most users.
QUESTION
I'm trying to implement a DQN. As a warm up I want to solve CartPole-v0 with a MLP consisting of two hidden layers along with input and output layers. The input is a 4 element array [cart position, cart velocity, pole angle, pole angular velocity] and output is an action value for each action (left or right). I am not exactly implementing a DQN from the "Playing Atari with DRL" paper (no frame stacking for inputs etc). I also made a few non standard choices like putting done
and the target network prediction of action value in the experience replay, but those choices shouldn't affect learning.
In any case I'm having a lot of trouble getting the thing to work. No matter how long I train the agent it keeps predicting a higher value for one action over another, for example Q(s, Right)> Q(s, Left) for all states s. Below is my learning code, my network definition, and some results I get from training
...ANSWER
Answered 2021-Dec-19 at 16:09There was nothing wrong with the network definition. It turns out the learning rate was too high and reducing it 0.00025 (as in the original Nature paper introducing the DQN) led to an agent which can solve CartPole-v0.
That said, the learning algorithm was incorrect. In particular I was using the wrong target action-value predictions. Note the algorithm laid out above does not use the most recent version of the target network to make predictions. This leads to poor results as training progresses because the agent is learning based on stale target data. The way to fix this is to just put (s, a, r, s', done)
into the replay memory and then make target predictions using the most up to date version of the target network when sampling a mini batch. See the code below for an updated learning loop.
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install Q-GridWorld
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page