kandi background
Explore Kits

potato | Android ContentProvider & amp ; SQLite database nonsense | Database library

 by   eyeem Java Version: Current License: No License

 by   eyeem Java Version: Current License: No License

Download this library from

kandi X-RAY | potato Summary

potato is a Java library typically used in Database applications. potato has no bugs, it has no vulnerabilities, it has build file available and it has low support. You can download it from GitHub.
potato
Support
Support
Quality
Quality
Security
Security
License
License
Reuse
Reuse

kandi-support Support

  • potato has a low active ecosystem.
  • It has 73 star(s) with 10 fork(s). There are 20 watchers for this library.
  • It had no major release in the last 12 months.
  • There are 3 open issues and 14 have been closed. On average issues are closed in 62 days. There are no pull requests.
  • It has a neutral sentiment in the developer community.
  • The latest version of potato is current.
potato Support
Best in #Database
Average in #Database
potato Support
Best in #Database
Average in #Database

quality kandi Quality

  • potato has 0 bugs and 0 code smells.
potato Quality
Best in #Database
Average in #Database
potato Quality
Best in #Database
Average in #Database

securitySecurity

  • potato has no vulnerabilities reported, and its dependent libraries have no vulnerabilities reported.
  • potato code analysis shows 0 unresolved vulnerabilities.
  • There are 0 security hotspots that need review.
potato Security
Best in #Database
Average in #Database
potato Security
Best in #Database
Average in #Database

license License

  • potato does not have a standard license declared.
  • Check the repository for any license declaration and review the terms closely.
  • Without a license, all rights are reserved, and you cannot use the library in your applications.
potato License
Best in #Database
Average in #Database
potato License
Best in #Database
Average in #Database

buildReuse

  • potato releases are not available. You will need to build from source code and install.
  • Build file is available. You can build the component from source.
  • Installation instructions are not available. Examples and code snippets are available.
  • potato saves you 826 person hours of effort in developing the same functionality from scratch.
  • It has 1895 lines of code, 205 functions and 16 files.
  • It has medium code complexity. Code complexity directly impacts maintainability of the code.
potato Reuse
Best in #Database
Average in #Database
potato Reuse
Best in #Database
Average in #Database
Top functions reviewed by kandi - BETA

kandi has reviewed potato and discovered the below as its top functions. This is intended to give you an instant insight into potato implemented functionality, and help decide if they suit your requirements.

  • Main entry point .
  • Delete all files recursively .
  • Evict all unassociated transactions .
  • Push an object to the subscribers .
  • Compares this object to another .
  • Entry point for the generated class .
  • Gets the serialVersionUID for the given class .
  • Gets the inner class .
  • Get the package of the given type .
  • Returns a hashCode for the value .

potato Key Features

Lukasz Wisniewski

Tobias Heine

default

copy iconCopydownload iconDownload
// Let's say we need to store Tweet objects, first
// we need to extend Storage
class TweetStorage extends Storage<Tweet> {

   // ...override these 2 methods

   @Override
   public String id(Tweet tweet) {
      return tweet.id;
   }

   @Override
   public Class<Tweet> classname() {
      return Tweet.class;
   }

   // ...and have some sort of singleton for the storage

   private TweetStorage(Context context) {
      super(context);
   }

   private static TweetStorage sInstance = null;

   public static TweetStorage getInstance(){
      if (sInstance == null) {
         sInstance = new TweetStorage(context);
         sInstance.init();
      }
      return sInstance;
   }
} // that's it!

// ... now somewhere in your code you can do things like this:
TweetStorage.List homeTimeline = TweetStorage.obtainList("home_timeline");
homeTimeline.subscribe(new Subscription() {
      @Override
      public void onUpdate(Action action) {
         // ...OMG MOAR TWEETS
         // add code here to update UI
      }
   });

// somewhere else in the code you can call something like this
// it will populate ADD_ALL action to your subscribers
homeTimeline.addAll(newTweetsIFetchedFromTheInternet);

How to prevent TextFormField redirecting to previous screen?

copy iconCopydownload iconDownload
void redirectToCategory(BuildContext context, String categoryName) {
Future.delayed(Duration.zero, () {
  Navigator.pushNamedAndRemoveUntil(
    context,
    '/recipeScreen',
    (_) => false,
    arguments: BlocProvider.value(
      value: BlocProvider.of<RecipesBloc>(context)
        ..add(LoadRecipesEvent())
        ..category = categoryName,
      child: RecipesScreen(),
    ),
  );
});

Pandas merging connected groups from multiple columns

copy iconCopydownload iconDownload
from itertools import combinations, chain
groups = {col:
          list(chain.from_iterable(list(combinations(x, 2))
                                   for x in df.index.groupby(df[col]).values()
                                   if len(x)>1))
          for col in df.columns}

# {'fruit': [(0, 3)],
#  'vegetable': [],
#  'sugar': [(0, 1)],
#  'color': [(2, 5), (0, 3)]}
import networkx as nx

edges = list(chain.from_iterable(groups.values()))

G = nx.from_edgelist(edges)
G.add_nodes_from(df.index)

combined_groups = {k:v for v,l in enumerate(nx.connected_components(G))
                   for k in l}
# index: group_id
# {0: 0, 1: 0, 3: 0, 2: 1, 5: 1, 4: 2, 6: 3}
df.groupby(df.index.map(combined_groups)).agg(list)
                    fruit           vegetable         sugar                     color
0  [peach, banana, peach]  [<NA>, <NA>, <NA>]  [17, 17, 18]  [orange, yellow, orange]
1         [<NA>, avocado]    [zucchini, <NA>]     [2, <NA>]            [green, green]
2                 [apple]              [<NA>]          [20]                     [red]
3                  [<NA>]            [potato]           [4]                   [brown]
-----------------------
from itertools import combinations, chain
groups = {col:
          list(chain.from_iterable(list(combinations(x, 2))
                                   for x in df.index.groupby(df[col]).values()
                                   if len(x)>1))
          for col in df.columns}

# {'fruit': [(0, 3)],
#  'vegetable': [],
#  'sugar': [(0, 1)],
#  'color': [(2, 5), (0, 3)]}
import networkx as nx

edges = list(chain.from_iterable(groups.values()))

G = nx.from_edgelist(edges)
G.add_nodes_from(df.index)

combined_groups = {k:v for v,l in enumerate(nx.connected_components(G))
                   for k in l}
# index: group_id
# {0: 0, 1: 0, 3: 0, 2: 1, 5: 1, 4: 2, 6: 3}
df.groupby(df.index.map(combined_groups)).agg(list)
                    fruit           vegetable         sugar                     color
0  [peach, banana, peach]  [<NA>, <NA>, <NA>]  [17, 17, 18]  [orange, yellow, orange]
1         [<NA>, avocado]    [zucchini, <NA>]     [2, <NA>]            [green, green]
2                 [apple]              [<NA>]          [20]                     [red]
3                  [<NA>]            [potato]           [4]                   [brown]
-----------------------
from itertools import combinations, chain
groups = {col:
          list(chain.from_iterable(list(combinations(x, 2))
                                   for x in df.index.groupby(df[col]).values()
                                   if len(x)>1))
          for col in df.columns}

# {'fruit': [(0, 3)],
#  'vegetable': [],
#  'sugar': [(0, 1)],
#  'color': [(2, 5), (0, 3)]}
import networkx as nx

edges = list(chain.from_iterable(groups.values()))

G = nx.from_edgelist(edges)
G.add_nodes_from(df.index)

combined_groups = {k:v for v,l in enumerate(nx.connected_components(G))
                   for k in l}
# index: group_id
# {0: 0, 1: 0, 3: 0, 2: 1, 5: 1, 4: 2, 6: 3}
df.groupby(df.index.map(combined_groups)).agg(list)
                    fruit           vegetable         sugar                     color
0  [peach, banana, peach]  [<NA>, <NA>, <NA>]  [17, 17, 18]  [orange, yellow, orange]
1         [<NA>, avocado]    [zucchini, <NA>]     [2, <NA>]            [green, green]
2                 [apple]              [<NA>]          [20]                     [red]
3                  [<NA>]            [potato]           [4]                   [brown]
-----------------------
from itertools import combinations, chain
groups = {col:
          list(chain.from_iterable(list(combinations(x, 2))
                                   for x in df.index.groupby(df[col]).values()
                                   if len(x)>1))
          for col in df.columns}

# {'fruit': [(0, 3)],
#  'vegetable': [],
#  'sugar': [(0, 1)],
#  'color': [(2, 5), (0, 3)]}
import networkx as nx

edges = list(chain.from_iterable(groups.values()))

G = nx.from_edgelist(edges)
G.add_nodes_from(df.index)

combined_groups = {k:v for v,l in enumerate(nx.connected_components(G))
                   for k in l}
# index: group_id
# {0: 0, 1: 0, 3: 0, 2: 1, 5: 1, 4: 2, 6: 3}
df.groupby(df.index.map(combined_groups)).agg(list)
                    fruit           vegetable         sugar                     color
0  [peach, banana, peach]  [<NA>, <NA>, <NA>]  [17, 17, 18]  [orange, yellow, orange]
1         [<NA>, avocado]    [zucchini, <NA>]     [2, <NA>]            [green, green]
2                 [apple]              [<NA>]          [20]                     [red]
3                  [<NA>]            [potato]           [4]                   [brown]
-----------------------
import pandas as pd

df = pd.DataFrame({
    'fruit': ['peach', 'banana', pd.NA, 'peach', 'apple', 'avocado', pd.NA],
    'vegetable': [pd.NA, pd.NA, 'zucchini', pd.NA, pd.NA, pd.NA, 'potato'],
    'sugar': [17, 17, 2, 18, 20, pd.NA, 4],
    'color': ['orange', 'yellow', 'green', 'orange', 'red', 'green', 'brown']
})

# Replacing pd.NA with empty string
df.replace(pd.NA, '', inplace=True)

# Initializing output dataframe with the columns of input dataframe
output_df = df2 = pd.DataFrame(data=None, columns=df.columns)

# Converting all the values per each row to list and removing empty values from it
df['common'] = df.values.tolist()
df['common'] = df['common'].apply(lambda x: list(filter(lambda y: y != '', x)))

check_list = set()
index = 0

# Iterating over each row of df
for i, row_i in df.iterrows():
    # Check if the index of row_i is not in check_list
    if i not in check_list:
        # Looping through the columns and setting up the output_df with each value as a list
        for column in df.columns[:-1]:
            temp = str(df.at[i, column])
            output_df.at[index, column] = [temp] if temp else []
        # Looping throught the dataframe again to compare the 'common' values
        for j, row_j in df.iterrows():
            # Check if index of row_j is not in check_list and not matches with the index of row_i
            if i != j and j not in check_list:
                # Check the common values between row_i and row_j
                # if found, update the output_df and append the values into the already defined list
                if set(row_i['common']).intersection(row_j['common']):
                    for column in df.columns[:-1]:
                        temp = str(df.at[j, column])
                        # Avoid the duplicate values in the column
                        if temp and temp not in output_df.at[index, column]:
                            output_df.at[index, column].append(temp)
                    check_list.add(j)
        # Increment the index of output_df
        index += 1

print(output_df)
             fruit   vegetable     sugar             color
0  [peach, banana]          []  [17, 18]  [orange, yellow]
1        [avocado]  [zucchini]       [2]           [green]
2          [apple]          []      [20]             [red]
3               []    [potato]       [4]           [brown]
-----------------------
import pandas as pd

df = pd.DataFrame({
    'fruit': ['peach', 'banana', pd.NA, 'peach', 'apple', 'avocado', pd.NA],
    'vegetable': [pd.NA, pd.NA, 'zucchini', pd.NA, pd.NA, pd.NA, 'potato'],
    'sugar': [17, 17, 2, 18, 20, pd.NA, 4],
    'color': ['orange', 'yellow', 'green', 'orange', 'red', 'green', 'brown']
})

# Replacing pd.NA with empty string
df.replace(pd.NA, '', inplace=True)

# Initializing output dataframe with the columns of input dataframe
output_df = df2 = pd.DataFrame(data=None, columns=df.columns)

# Converting all the values per each row to list and removing empty values from it
df['common'] = df.values.tolist()
df['common'] = df['common'].apply(lambda x: list(filter(lambda y: y != '', x)))

check_list = set()
index = 0

# Iterating over each row of df
for i, row_i in df.iterrows():
    # Check if the index of row_i is not in check_list
    if i not in check_list:
        # Looping through the columns and setting up the output_df with each value as a list
        for column in df.columns[:-1]:
            temp = str(df.at[i, column])
            output_df.at[index, column] = [temp] if temp else []
        # Looping throught the dataframe again to compare the 'common' values
        for j, row_j in df.iterrows():
            # Check if index of row_j is not in check_list and not matches with the index of row_i
            if i != j and j not in check_list:
                # Check the common values between row_i and row_j
                # if found, update the output_df and append the values into the already defined list
                if set(row_i['common']).intersection(row_j['common']):
                    for column in df.columns[:-1]:
                        temp = str(df.at[j, column])
                        # Avoid the duplicate values in the column
                        if temp and temp not in output_df.at[index, column]:
                            output_df.at[index, column].append(temp)
                    check_list.add(j)
        # Increment the index of output_df
        index += 1

print(output_df)
             fruit   vegetable     sugar             color
0  [peach, banana]          []  [17, 18]  [orange, yellow]
1        [avocado]  [zucchini]       [2]           [green]
2          [apple]          []      [20]             [red]
3               []    [potato]       [4]           [brown]

Pivoting a table with multiple binary measures of the same variable in R

copy iconCopydownload iconDownload
library(dplyr)
library(tidyr)
# library(tidyverse)

groceries %>%
  pivot_longer(-item,
               names_to = c("group", "options"),
               names_sep = "_") %>%
  group_by(item, group) %>%
  summarize(options = options[value == "Y"],
            .groups = "drop") %>%
  pivot_wider(names_from = "group",
              values_from = "options")
#> # A tibble: 4 × 3
#>    item day       prod  
#>   <dbl> <chr>     <chr> 
#> 1     1 wednesday banana
#> 2     2 wednesday potato
#> 3     3 tuesday   potato
#> 4     4 monday    apple
-----------------------
library(data.table)
setDT(groceries)

dt <- melt(groceries, id.vars = c("item"))[value == "Y"]
dt[, c("A", "B") := tstrsplit(variable, "_")]
dcast(dt, item ~ A, value.var = c("B"))

#    item       day   prod
# 1:    1 wednesday banana
# 2:    2 wednesday potato
# 3:    3   tuesday potato
# 4:    4    monday  apple
-----------------------
dfout <- reshape(
  transform(
    subset(
      cbind(groceries[1], stack(groceries[-1])),
      values == "Y"
    ),
    p = gsub("_.*", "", ind),
    q = gsub(".*_", "", ind)
  )[c("item", "p", "q")],
  direction = "wide",
  idvar = "item",
  timevar = "p"
)

dfout[order(dfout$item), ]
  item q.prod     q.day
9    1 banana wednesday
2    2 potato wednesday
3    3 potato   tuesday
8    4  apple    monday
-----------------------
dfout <- reshape(
  transform(
    subset(
      cbind(groceries[1], stack(groceries[-1])),
      values == "Y"
    ),
    p = gsub("_.*", "", ind),
    q = gsub(".*_", "", ind)
  )[c("item", "p", "q")],
  direction = "wide",
  idvar = "item",
  timevar = "p"
)

dfout[order(dfout$item), ]
  item q.prod     q.day
9    1 banana wednesday
2    2 potato wednesday
3    3 potato   tuesday
8    4  apple    monday

Return rows where array column has match for every pattern in given array

copy iconCopydownload iconDownload
SELECT t.id, t.value
FROM   tbl t
WHERE  NOT EXISTS (
   SELECT FROM unnest('{%friend%, %cat%}'::text[]) AS p(pattern)
   WHERE  NOT EXISTS (
      SELECT FROM unnest(t.value) AS a(elem)
      WHERE  a.elem LIKE p.pattern
      )
   );
SELECT id, value
FROM   tbl
WHERE  value @> '{friend, cat}';
-----------------------
SELECT t.id, t.value
FROM   tbl t
WHERE  NOT EXISTS (
   SELECT FROM unnest('{%friend%, %cat%}'::text[]) AS p(pattern)
   WHERE  NOT EXISTS (
      SELECT FROM unnest(t.value) AS a(elem)
      WHERE  a.elem LIKE p.pattern
      )
   );
SELECT id, value
FROM   tbl
WHERE  value @> '{friend, cat}';

Column with list values, eliminate spaces as they are counted when performing str.len()

copy iconCopydownload iconDownload
df['Food'].apply(lambda lst: len([e for e in lst if e != '']))
-----------------------
df = pd.DataFrame({'Food': [[''], ['potato', 'carrot'], ['potato', '']]})
df['length'] = df['Food'].explode().str.len().gt(0).groupby(level=0).sum()
df['length'] = [len([x for x in lst if x!='']) for lst in df['Food']]
               Food  length
0                []      0
1  [potato, carrot]      2
2        [potato, ]      1
-----------------------
df = pd.DataFrame({'Food': [[''], ['potato', 'carrot'], ['potato', '']]})
df['length'] = df['Food'].explode().str.len().gt(0).groupby(level=0).sum()
df['length'] = [len([x for x in lst if x!='']) for lst in df['Food']]
               Food  length
0                []      0
1  [potato, carrot]      2
2        [potato, ]      1
-----------------------
df = pd.DataFrame({'Food': [[''], ['potato', 'carrot'], ['potato', '']]})
df['length'] = df['Food'].explode().str.len().gt(0).groupby(level=0).sum()
df['length'] = [len([x for x in lst if x!='']) for lst in df['Food']]
               Food  length
0                []      0
1  [potato, carrot]      2
2        [potato, ]      1
-----------------------
df['Count'] = df['Food'].apply(lambda x: len(set(x).difference({''})))
               Food  Count
0                []      0
1  [potato, carrot]      2
2        [potato, ]      1
-----------------------
df['Count'] = df['Food'].apply(lambda x: len(set(x).difference({''})))
               Food  Count
0                []      0
1  [potato, carrot]      2
2        [potato, ]      1

Aws CodeDeploy CDK Lambda Java in Docker build fails with return code 125

copy iconCopydownload iconDownload
CodePipeline pipeline = CodePipeline.Builder.create(this, "pipeline")
    .pipelineName("PotatoesCloudPipeline")
    .synth(ShellStep.Builder.create("Synth")
        .input(CodePipelineSource.gitHub("PotatoesCompany/potatoesCloud", "master", GitHubSourceOptions.builder()
            .trigger(GitHubTrigger.WEBHOOK)
            .authentication(SecretValue.plainText("NiceSecretAuth")).build()))
        .commands(Arrays.asList("npm install -g aws-cdk", "cdk synth"))
        .build())
    .build();

pipeline.addStage(new PotatoesCloudStage(this, "PotatoesCloudStage", getStageProps()));
CodePipeline pipeline = CodePipeline.Builder.create(this, "pipeline")
    .pipelineName("PotatoesCloudPipeline")
    .synth(ShellStep.Builder.create("Synth")
        .input(CodePipelineSource.gitHub("PotatoesCompany/potatoesCloud", "master", GitHubSourceOptions.builder()
            .trigger(GitHubTrigger.WEBHOOK)
            .authentication(SecretValue.plainText("NiceSecretAuth")).build()))
        .commands(Arrays.asList("npm install -g aws-cdk", "cdk synth"))
        .build())
    .dockerEnabledForSynth(true)
    .build();

pipeline.addStage(new PotatoesCloudStage(this, "PotatoesCloudStage", getStageProps()));
-----------------------
CodePipeline pipeline = CodePipeline.Builder.create(this, "pipeline")
    .pipelineName("PotatoesCloudPipeline")
    .synth(ShellStep.Builder.create("Synth")
        .input(CodePipelineSource.gitHub("PotatoesCompany/potatoesCloud", "master", GitHubSourceOptions.builder()
            .trigger(GitHubTrigger.WEBHOOK)
            .authentication(SecretValue.plainText("NiceSecretAuth")).build()))
        .commands(Arrays.asList("npm install -g aws-cdk", "cdk synth"))
        .build())
    .build();

pipeline.addStage(new PotatoesCloudStage(this, "PotatoesCloudStage", getStageProps()));
CodePipeline pipeline = CodePipeline.Builder.create(this, "pipeline")
    .pipelineName("PotatoesCloudPipeline")
    .synth(ShellStep.Builder.create("Synth")
        .input(CodePipelineSource.gitHub("PotatoesCompany/potatoesCloud", "master", GitHubSourceOptions.builder()
            .trigger(GitHubTrigger.WEBHOOK)
            .authentication(SecretValue.plainText("NiceSecretAuth")).build()))
        .commands(Arrays.asList("npm install -g aws-cdk", "cdk synth"))
        .build())
    .dockerEnabledForSynth(true)
    .build();

pipeline.addStage(new PotatoesCloudStage(this, "PotatoesCloudStage", getStageProps()));

Localization from Excel to JSON using Python

copy iconCopydownload iconDownload
json = df.set_index('en', drop=False).to_json(indent=2)
>>> print(json)
{
  "en":{
    "Ball":"Ball",
    "Snow":"Snow",
    "Elephant":"Elephant",
    "Woman":"Woman",
    "Potato":"Potato",
    "Tomato":"Tomato",
    "Carrot":"Carrot"
  },
  "de":{
    "Ball":"Ball",
    "Snow":"Schnee",
    "Elephant":"Elephant",
    "Woman":"Frau",
    "Potato":"Kartoffeln",
    "Tomato":"F",
    "Carrot":"G"
  },
  "ru":{
    "Ball":"AA",
    "Snow":"BB",
    "Elephant":"CC",
    "Woman":"DD",
    "Potato":"EE",
    "Tomato":"FF",
    "Carrot":"GG"
  }
}
import json

# Load old JSON from a file.
with open('old_json.json') as f:
    old_json = json.load(f)

# Load new data from spreadsheet.
new_data = pd.read_excel('...')

# Create dataframe from old JSON.
old_data = pd.DataFrame(old_json)

# Convert columns of both dataframes to lowercase.
new_data.columns = new_data.columns.astype(str).str.lower()
old_data.columns = old_data.columns.astype(str).str.lower()

# Append new data to old data and convert joined data to JSON.
new_json = pd.concat([old_data, new_data.set_index('en', drop=False)]).to_dict()

# Save new JSON to a file.
with open('new_json.json', 'w') as f:
    json.dump(new_json, f)
-----------------------
json = df.set_index('en', drop=False).to_json(indent=2)
>>> print(json)
{
  "en":{
    "Ball":"Ball",
    "Snow":"Snow",
    "Elephant":"Elephant",
    "Woman":"Woman",
    "Potato":"Potato",
    "Tomato":"Tomato",
    "Carrot":"Carrot"
  },
  "de":{
    "Ball":"Ball",
    "Snow":"Schnee",
    "Elephant":"Elephant",
    "Woman":"Frau",
    "Potato":"Kartoffeln",
    "Tomato":"F",
    "Carrot":"G"
  },
  "ru":{
    "Ball":"AA",
    "Snow":"BB",
    "Elephant":"CC",
    "Woman":"DD",
    "Potato":"EE",
    "Tomato":"FF",
    "Carrot":"GG"
  }
}
import json

# Load old JSON from a file.
with open('old_json.json') as f:
    old_json = json.load(f)

# Load new data from spreadsheet.
new_data = pd.read_excel('...')

# Create dataframe from old JSON.
old_data = pd.DataFrame(old_json)

# Convert columns of both dataframes to lowercase.
new_data.columns = new_data.columns.astype(str).str.lower()
old_data.columns = old_data.columns.astype(str).str.lower()

# Append new data to old data and convert joined data to JSON.
new_json = pd.concat([old_data, new_data.set_index('en', drop=False)]).to_dict()

# Save new JSON to a file.
with open('new_json.json', 'w') as f:
    json.dump(new_json, f)
-----------------------
json = df.set_index('en', drop=False).to_json(indent=2)
>>> print(json)
{
  "en":{
    "Ball":"Ball",
    "Snow":"Snow",
    "Elephant":"Elephant",
    "Woman":"Woman",
    "Potato":"Potato",
    "Tomato":"Tomato",
    "Carrot":"Carrot"
  },
  "de":{
    "Ball":"Ball",
    "Snow":"Schnee",
    "Elephant":"Elephant",
    "Woman":"Frau",
    "Potato":"Kartoffeln",
    "Tomato":"F",
    "Carrot":"G"
  },
  "ru":{
    "Ball":"AA",
    "Snow":"BB",
    "Elephant":"CC",
    "Woman":"DD",
    "Potato":"EE",
    "Tomato":"FF",
    "Carrot":"GG"
  }
}
import json

# Load old JSON from a file.
with open('old_json.json') as f:
    old_json = json.load(f)

# Load new data from spreadsheet.
new_data = pd.read_excel('...')

# Create dataframe from old JSON.
old_data = pd.DataFrame(old_json)

# Convert columns of both dataframes to lowercase.
new_data.columns = new_data.columns.astype(str).str.lower()
old_data.columns = old_data.columns.astype(str).str.lower()

# Append new data to old data and convert joined data to JSON.
new_json = pd.concat([old_data, new_data.set_index('en', drop=False)]).to_dict()

# Save new JSON to a file.
with open('new_json.json', 'w') as f:
    json.dump(new_json, f)

Pandas DF merge based on matching cell name

copy iconCopydownload iconDownload
df = df2.set_index('Asset Name').combine_first(df1.set_index('Asset Name')).dropna().reset_index()
print (df)
  Asset Name Grade Score   Type
0      Apple     E    70  fruit
1     Banana     A   100  fruit
2       Pear     B    60  fruit

How to print two aligned columns of text from a list (which may have an odd number of elements) in python?

copy iconCopydownload iconDownload
my_list = ['Beef','Chicken','Eggs','Lamb','Nuts','Pork','Potatoes']

for i in range(0, len(my_list), 2):
    print(' '.join(f"-- {s:10}" for s in my_list[i:i+2]))
-- Beef       -- Chicken
-- Eggs       -- Lamb
-- Nuts       -- Pork
-- Potatoes
output = '\n'.join(' '.join(f"-- {s:10}" for s in my_list[i:i+2]) for i in range(0, len(my_list), 2))
-----------------------
my_list = ['Beef','Chicken','Eggs','Lamb','Nuts','Pork','Potatoes']

for i in range(0, len(my_list), 2):
    print(' '.join(f"-- {s:10}" for s in my_list[i:i+2]))
-- Beef       -- Chicken
-- Eggs       -- Lamb
-- Nuts       -- Pork
-- Potatoes
output = '\n'.join(' '.join(f"-- {s:10}" for s in my_list[i:i+2]) for i in range(0, len(my_list), 2))
-----------------------
my_list = ['Beef','Chicken','Eggs','Lamb','Nuts','Pork','Potatoes']

for i in range(0, len(my_list), 2):
    print(' '.join(f"-- {s:10}" for s in my_list[i:i+2]))
-- Beef       -- Chicken
-- Eggs       -- Lamb
-- Nuts       -- Pork
-- Potatoes
output = '\n'.join(' '.join(f"-- {s:10}" for s in my_list[i:i+2]) for i in range(0, len(my_list), 2))
-----------------------
# Figure out the number of columns you wish to have in your table.
COLUMNS = 2

my_list = ['Beef','Chicken','Eggs','Lamb','Nuts','Pork','Potatoes']

# Figure our the length of the longest word in the list
longest_word_length = max(map(len,my_list))

# Create a format string that will add some spacing to the list
format_string = f'-- {{0:{longest_word_length+2}}}'

output = []

# Format all the items in the list
for index, item in enumerate(my_list, start=1):
    output.append(format_string.format(item))
    if index % COLUMNS == 0:
        output.append('\n')

print(''.join(output))
-----------------------
for i in range(0, len(my_list), 2):
    print(' '.join(f"-- {s:10}" for s in my_list[i:i+2]))
output = '\n'.join(' '.join(f"-- {s:10}" for s in my_list[i:i+2]) for i in range(0, len(my_list), 2))
def generate_columns(list_in, n_columns, column_space, output_as_list = True):
    # Figure our the length of the longest word in the list
    longest_word_length = max(map(len,list_in))
    column_length = longest_word_length + column_space

    output = [''.join([f"-- {s:{column_length}}" \
                       for s in my_list[i:i+n_columns]]) for i in range(0, len(my_list), n_columns)]
    if output_as_list:
        return output
    return '\n'.join(o for o in output)


my_list = ['Beef','Chicken','Eggs','Lamb','Nuts','Pork','Potatoes']

print(generate_columns(my_list, 3, 5))
#['-- Beef         -- Chicken      -- Eggs         ', '-- Lamb         -- Nuts      -- Pork         ', '-- Potatoes     ']
print(generate_columns(my_list, 2, 3, output_as_list = False))
#-- Beef       -- Chicken
#-- Eggs       -- Lamb
#-- Nuts       -- Pork
#-- Potatoes
-----------------------
for i in range(0, len(my_list), 2):
    print(' '.join(f"-- {s:10}" for s in my_list[i:i+2]))
output = '\n'.join(' '.join(f"-- {s:10}" for s in my_list[i:i+2]) for i in range(0, len(my_list), 2))
def generate_columns(list_in, n_columns, column_space, output_as_list = True):
    # Figure our the length of the longest word in the list
    longest_word_length = max(map(len,list_in))
    column_length = longest_word_length + column_space

    output = [''.join([f"-- {s:{column_length}}" \
                       for s in my_list[i:i+n_columns]]) for i in range(0, len(my_list), n_columns)]
    if output_as_list:
        return output
    return '\n'.join(o for o in output)


my_list = ['Beef','Chicken','Eggs','Lamb','Nuts','Pork','Potatoes']

print(generate_columns(my_list, 3, 5))
#['-- Beef         -- Chicken      -- Eggs         ', '-- Lamb         -- Nuts      -- Pork         ', '-- Potatoes     ']
print(generate_columns(my_list, 2, 3, output_as_list = False))
#-- Beef       -- Chicken
#-- Eggs       -- Lamb
#-- Nuts       -- Pork
#-- Potatoes
-----------------------
for i in range(0, len(my_list), 2):
    print(' '.join(f"-- {s:10}" for s in my_list[i:i+2]))
output = '\n'.join(' '.join(f"-- {s:10}" for s in my_list[i:i+2]) for i in range(0, len(my_list), 2))
def generate_columns(list_in, n_columns, column_space, output_as_list = True):
    # Figure our the length of the longest word in the list
    longest_word_length = max(map(len,list_in))
    column_length = longest_word_length + column_space

    output = [''.join([f"-- {s:{column_length}}" \
                       for s in my_list[i:i+n_columns]]) for i in range(0, len(my_list), n_columns)]
    if output_as_list:
        return output
    return '\n'.join(o for o in output)


my_list = ['Beef','Chicken','Eggs','Lamb','Nuts','Pork','Potatoes']

print(generate_columns(my_list, 3, 5))
#['-- Beef         -- Chicken      -- Eggs         ', '-- Lamb         -- Nuts      -- Pork         ', '-- Potatoes     ']
print(generate_columns(my_list, 2, 3, output_as_list = False))
#-- Beef       -- Chicken
#-- Eggs       -- Lamb
#-- Nuts       -- Pork
#-- Potatoes

Changing the column name based on a partial string or substring

copy iconCopydownload iconDownload
library(dplyr)
library(purrr)

list_df <- lst(Apple, Mango, Banana, Potato, Tomato)

list_df <- map(list_df, 
             ~.x %>% rename_with(~'Growth', matches('Growth Level Judgement')))

list2env(list_df, .GlobalEnv)
Apple %>% rename_with(~'Growth', matches('Growth Level Judgement')))
names(Apple)[grep('Growth Level Judgement', names(Apple))] <- 'Growth'
-----------------------
library(dplyr)
library(purrr)

list_df <- lst(Apple, Mango, Banana, Potato, Tomato)

list_df <- map(list_df, 
             ~.x %>% rename_with(~'Growth', matches('Growth Level Judgement')))

list2env(list_df, .GlobalEnv)
Apple %>% rename_with(~'Growth', matches('Growth Level Judgement')))
names(Apple)[grep('Growth Level Judgement', names(Apple))] <- 'Growth'
-----------------------
library(dplyr)
library(purrr)

list_df <- lst(Apple, Mango, Banana, Potato, Tomato)

list_df <- map(list_df, 
             ~.x %>% rename_with(~'Growth', matches('Growth Level Judgement')))

list2env(list_df, .GlobalEnv)
Apple %>% rename_with(~'Growth', matches('Growth Level Judgement')))
names(Apple)[grep('Growth Level Judgement', names(Apple))] <- 'Growth'
-----------------------
Apple %>% 
      rename_with(~'Growth', ends_with('Growth Level Judgement'))
-----------------------
names(Apple)[endsWith(names(Apple), 'Growth Level Judgement')] <- 'Growth'

Community Discussions

Trending Discussions on potato
  • How to prevent TextFormField redirecting to previous screen?
  • Pandas merging connected groups from multiple columns
  • Pivoting a table with multiple binary measures of the same variable in R
  • Return rows where array column has match for every pattern in given array
  • Column with list values, eliminate spaces as they are counted when performing str.len()
  • Aws CodeDeploy CDK Lambda Java in Docker build fails with return code 125
  • Localization from Excel to JSON using Python
  • Keep getting &quot;307 Temporary Redirect&quot; before returning status 200 hosted on FastAPI + uvicorn + Docker app - how to return status 200?
  • Pandas DF merge based on matching cell name
  • How to print two aligned columns of text from a list (which may have an odd number of elements) in python?
Trending Discussions on potato

QUESTION

How to prevent TextFormField redirecting to previous screen?

Asked 2022-Mar-16 at 11:25

I am trying to create form. I managed to create every widget in it, but every time I try to open TextFormField I get redirected back to my MainMenuScreen without any error.

I am using BLoC and routes. I think that issue might be related with using named routes. Issue was not spotted before changing to named routes

MainMenuScreen fragment:

           CategoryCard(
              categoryName: 'Main dishes',
              assetPath: 'assets/images/main_dish.png',
              onPressed: () => Navigator.pushReplacement(context,
                  MaterialPageRoute(builder: (BuildContext context) {
                return BlocProvider.value(
                  value: BlocProvider.of<RecipesBloc>(context)
                    ..add(LoadRecipesEvent())
                    ..category = 'main_dish',
                  child: RecipesScreen(),
                );
              })),
            ),

From MainMenuScreen I redirect to RecipesScreen

Fragment of RecipesScreen with redirect to RecipeCreateForm:

      floatingActionButton: FloatingActionButton(
        onPressed: () => Navigator.pushReplacement(
          context,
          MaterialPageRoute(builder: (BuildContext context) {
            return RecipeCreateForm();
          }),
        ),

and then I redirect to RecipeCreateForm where I'm using TextFormFields. Whenever I try to use TextFormField I get redirected back to MainMenuScreen.

class RecipeCreateForm extends StatefulWidget {
  @override
  _RecipeCreateFormState createState() => _RecipeCreateFormState();
}

class _RecipeCreateFormState extends State<RecipeCreateForm> {
  final _recipeNameController = TextEditingController();
  final _imageUrl = TextEditingController();
  String? _difficultyValue;
  late int _ingredientsQuantity;
  late int _preparationStepsQuantity;
  late List<Ingredient> _ingredientsValues;
  late List<PreparationStep> _preparationStepsValues;
  late double _preparationTime;
  String? _portions;

  @override
  void initState() {
    _ingredientsQuantity = 1;
    _preparationStepsQuantity = 1;
    _ingredientsValues = [];
    _preparationStepsValues = [];
    _preparationTime = 0;
    super.initState();
  }

  @override
  Widget build(BuildContext context) {
    return Scaffold(
      resizeToAvoidBottomInset: true,
      appBar: AppBar(
        leading: IconButton(
          onPressed: () {
            Navigator.of(context).pop();
          },
          icon: Icon(
            Icons.arrow_back,
            color: Colors.white,
          ),
        ),
      ),
      body: Scrollbar(
        thickness: 10,
        hoverThickness: 2,
        child: SingleChildScrollView(
          child: Container(
            color: Colors.lightGreen.shade100,
            child: Column(
              children: <Widget>[
                Padding(
                  padding: EdgeInsets.only(top: 15),
                ),
                Text(
                  'Recipe name',
                  style: TextStyle(fontWeight: FontWeight.bold, fontSize: 20),
                ),
                TextFormField(
                  style: TextStyle(
                      color: Colors.black,
                      fontSize: 18,
                      fontStyle: FontStyle.italic),
                  controller: _recipeNameController,
                ),
                Padding(
                  padding: EdgeInsets.only(top: 15),
                ),
                Text(
                  'Image',
                  style: TextStyle(fontWeight: FontWeight.bold, fontSize: 20),
                ),
                TextFormField(
                  style: TextStyle(
                      color: Colors.black,
                      fontSize: 18,
                      fontStyle: FontStyle.italic),
                  controller: _imageUrl,
                ),
                Padding(
                  padding: EdgeInsets.only(top: 15),
                ),
                Text(
                  'Difficulty',
                  style: TextStyle(fontWeight: FontWeight.bold, fontSize: 20),
                ),
                DropdownButton(
                  hint: _difficultyValue == null
                      ? Text(
                          'Select difficulty',
                          style: TextStyle(
                              color: Colors.black,
                              fontSize: 18,
                              fontStyle: FontStyle.italic),
                        )
                      : Text(
                          _difficultyValue!,
                          style: TextStyle(
                              color: Colors.black,
                              fontSize: 18,
                              fontStyle: FontStyle.italic),
                        ),
                  isExpanded: true,
                  iconSize: 30.0,
                  style: TextStyle(
                      color: Colors.black,
                      fontSize: 18,
                      fontStyle: FontStyle.italic),
                  items: ['Easy', 'Medium', 'Hard'].map(
                    (val) {
                      return DropdownMenuItem<String>(
                        value: val,
                        child: Text(val),
                      );
                    },
                  ).toList(),
                  onChanged: (val) {
                    setState(
                      () {
                        _difficultyValue = val as String;
                      },
                    );
                  },
                ),
                Padding(
                  padding: EdgeInsets.only(top: 15),
                ),
                Text(
                  'Preparation time',
                  style: TextStyle(fontWeight: FontWeight.bold, fontSize: 20),
                ),
                Slider(
                  value: _preparationTime,
                  onChanged: (newPreparationTime) {
                    setState(() => _preparationTime = newPreparationTime);
                  },
                  label: _preparationTime.toStringAsFixed(0),
                  min: 0,
                  max: 360,
                  divisions: 24,
                ),
                Padding(
                  padding: EdgeInsets.only(top: 15),
                ),
                Text(
                  'Ingredients',
                  style: TextStyle(fontWeight: FontWeight.bold, fontSize: 20),
                ),
                SizedBox(
                  height: 175,
                  child: Scrollbar(
                    child: ListView.builder(
                        itemCount: _ingredientsQuantity,
                        itemBuilder: (context, index) {
                          return _ingredientRow(index);
                        }),
                  ),
                ),
                Row(
                  children: [
                    IconButton(
                        icon: Icon(Icons.add),
                        onPressed: () async {
                          setState(() {
                            _ingredientsQuantity++;
                          });
                        }),
                    IconButton(
                        icon: Icon(Icons.delete),
                        onPressed: () async {
                          setState(() {
                            _ingredientsQuantity = 1;
                            _ingredientsValues.clear();
                          });
                        })
                  ],
                ),
                Padding(
                  padding: EdgeInsets.only(top: 15),
                ),
                Text(
                  'Preparation steps',
                  style: TextStyle(fontWeight: FontWeight.bold, fontSize: 20),
                ),
                Scrollbar(
                  child: SizedBox(
                    height: 100,
                    child: ListView.builder(
                        shrinkWrap: true,
                        itemCount: _preparationStepsQuantity,
                        itemBuilder: (context, index) {
                          return _preparationStepRow(index);
                        }),
                  ),
                ),
                Row(
                  children: [
                    IconButton(
                        icon: Icon(Icons.add),
                        onPressed: () async {
                          setState(() {
                            _preparationStepsQuantity++;
                          });
                        }),
                    IconButton(
                        icon: Icon(Icons.delete),
                        onPressed: () async {
                          setState(() {
                            _preparationStepsQuantity = 1;
                            _preparationStepsValues.clear();
                          });
                        }),
                  ],
                ),
                Padding(
                  padding: EdgeInsets.only(top: 15),
                ),
                Text(
                  'Portions',
                  style: TextStyle(fontWeight: FontWeight.bold, fontSize: 20),
                ),
                DropdownButton(
                  hint: _portions == null
                      ? Text(
                          'Select number of portions',
                          style: TextStyle(
                              color: Colors.black,
                              fontSize: 18,
                              fontStyle: FontStyle.italic),
                        )
                      : Text(
                          _portions!,
                          style: TextStyle(
                              color: Colors.black,
                              fontSize: 18,
                              fontStyle: FontStyle.italic),
                        ),
                  isExpanded: true,
                  iconSize: 30.0,
                  style: TextStyle(
                      color: Colors.black,
                      fontSize: 18,
                      fontStyle: FontStyle.italic),
                  items: ['1', '2', '3', '4', '5', '6', '7'].map(
                    (val) {
                      return DropdownMenuItem<String>(
                        value: val,
                        child: Text(val),
                      );
                    },
                  ).toList(),
                  onChanged: (val) {
                    setState(
                      () {
                        _portions = val as String;
                      },
                    );
                  },
                ),
                ElevatedButton(
                  onPressed: () {
                    BlocProvider.of<RecipesBloc>(context).add(
                      AddRecipeEvent(
                        Recipe(
                          name: _recipeNameController.text,
                          image:
                              'https://www.thespruceeats.com/thmb/dA8o8EZpjJyeocYZNpzfknoKh2s=/4351x3263/smart/filters:no_upscale()/baked-stuffed-potatoes-482217-hero-01-850f2d87fe80403f923e140dbf5f1bf3.jpg',
                          ingredients: _ingredientsValues,
                          difficulty: _difficultyValue,
                          preparationTime: _preparationTime,
                          preparationSteps: _preparationStepsValues,
                          type: BlocProvider.of<RecipesBloc>(context)
                              .category
                              .toString(),
                          portions: _portions,
                        ),
                      ),
                    );
                    Navigator.of(context).pop();
                  },
                  child: Text('Submit'),
                ),
              ],
            ),
          ),
        ),
      ),
    );
  }

  _ingredientRow(int key) {
    return IntrinsicHeight(
      child: Row(
        children: [
          Padding(padding: EdgeInsets.only(left: 10)),
          SizedBox(
            width: 225,
            child: TextFormField(
              maxLength: 35,
              onChanged: (val) {
                setState(() {
                  _onIngredientUpdate(key,name: val);
                });
              },
            ),
          ),
          VerticalDivider(
            width: 20,
            thickness: 1,
            color: Colors.black,
            indent: 30,
            endIndent: 10,
          ),
          SizedBox(
            width: 55,
            child: TextFormField(
              maxLength: 7,
              initialValue: '0',
              onChanged: (val) {
                setState(() {
                  _onIngredientUpdate(key, quantity: val);
                });
              },
            ),
          ),
          Padding(padding: EdgeInsets.only(left: 10)),
          DropdownButton(
            hint: Text('pcs'),
            items: ['pcs', 'ml', 'g'].map(
              (val) {
                return DropdownMenuItem<String>(
                  value: val,
                  child: Text(val),
                );
              },
            ).toList(),
            onChanged: (val) {
              setState(() {
                _onIngredientUpdate(key,measurement: val.toString());
              });
            },
          )
        ],
      ),
    );
  }

  _onIngredientUpdate(int key, {String? name, String? measurement, String? quantity}) {
    int foundKey = -1;
    _ingredientsValues.forEach((element) {
      if (element.id.contains(key.toString())) {
        foundKey = key;
      }
    });

    if (-1 != foundKey) {
      _ingredientsValues.removeWhere((map) {
        return map.id == foundKey.toString();
      });
    }
    Map<String, dynamic> json = {'id': key, 'name': name, 'measurement': measurement, 'quantity':quantity};
    _ingredientsValues.add(json as Ingredient);
  }

  _preparationStepRow(int key) {
    return IntrinsicHeight(
      child: Row(
        children: [
          Padding(padding: EdgeInsets.only(left: 10)),
          SizedBox(
            width: 225,
            height: 50,
            child: TextFormField(
              maxLength: 35,
              onChanged: (val) => {
                _onPreparationUpdate(key,val)
              },
            ),
          ),
        ],
      ),
    );
  }

  _onPreparationUpdate(int key, String val) {
    int foundKey = -1;
    _preparationStepsValues.forEach((element) {
      if (element.id.contains(key.toString())) {
        foundKey = key;
      }
    });

    if (-1 != foundKey) {
      _preparationStepsValues.removeWhere((map) {
        return map.id == foundKey.toString();
      });
    }
    Map<String, dynamic> json = {'id': key, 'step': val};
    _preparationStepsValues.add(json as PreparationStep);
  }
}

Issue GIF:

Issue

EDIT: Issue is not related with form. I have replaced whole form with only one field without any logic and issue remains. It is probably related to named routes.

ANSWER

Answered 2022-Mar-16 at 11:25

As I was thinking, issue was related with usage of named routes. I managed to bypass this issue with using Future.delayed and pushNamedAndRemoveUntil

In main_menu_screen I have created method which I later used to redirect to categories.

void redirectToCategory(BuildContext context, String categoryName) {
Future.delayed(Duration.zero, () {
  Navigator.pushNamedAndRemoveUntil(
    context,
    '/recipeScreen',
    (_) => false,
    arguments: BlocProvider.value(
      value: BlocProvider.of<RecipesBloc>(context)
        ..add(LoadRecipesEvent())
        ..category = categoryName,
      child: RecipesScreen(),
    ),
  );
});

Source https://stackoverflow.com/questions/71355959

Community Discussions, Code Snippets contain sources that include Stack Exchange Network

Vulnerabilities

No vulnerabilities reported

Install potato

You can download it from GitHub.
You can use potato like any standard Java library. Please include the the jar files in your classpath. You can also use any IDE and you can run and debug the potato component as you would do with any other Java program. Best practice is to use a build tool that supports dependency management such as Maven or Gradle. For Maven installation, please refer maven.apache.org. For Gradle installation, please refer gradle.org .

Support

For any new features, suggestions and bugs create an issue on GitHub. If you have any questions check and ask questions on community page Stack Overflow .

DOWNLOAD this Library from

Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from
over 430 million Knowledge Items
Find more libraries
Reuse Solution Kits and Libraries Curated by Popular Use Cases

Save this library and start creating your kit

Explore Related Topics

Share this Page

share link
Compare Database Libraries with Highest Support
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from
over 430 million Knowledge Items
Find more libraries
Reuse Solution Kits and Libraries Curated by Popular Use Cases

Save this library and start creating your kit

  • © 2022 Open Weaver Inc.