kandi background
Explore Kits

jbpm-6-examples | Examples how to use | Machine Learning library

 by   jsvitak Java Version: Current License: Apache-2.0

 by   jsvitak Java Version: Current License: Apache-2.0

Download this library from

kandi X-RAY | jbpm-6-examples Summary

jbpm-6-examples is a Java library typically used in Artificial Intelligence, Machine Learning, Deep Learning applications. jbpm-6-examples has no bugs, it has no vulnerabilities, it has a Permissive License and it has low support. However jbpm-6-examples build file is not available. You can download it from GitHub.
Web examples for jBPM 6.2. Distributed under Apache Software License 2.0. Steps to try them can be found in their folders.
Support
Support
Quality
Quality
Security
Security
License
License
Reuse
Reuse

kandi-support Support

  • jbpm-6-examples has a low active ecosystem.
  • It has 32 star(s) with 132 fork(s). There are 9 watchers for this library.
  • It had no major release in the last 12 months.
  • There are 1 open issues and 3 have been closed. On average issues are closed in 49 days. There are 3 open pull requests and 0 closed requests.
  • It has a neutral sentiment in the developer community.
  • The latest version of jbpm-6-examples is current.
jbpm-6-examples Support
Best in #Machine Learning
Average in #Machine Learning
jbpm-6-examples Support
Best in #Machine Learning
Average in #Machine Learning

quality kandi Quality

  • jbpm-6-examples has 0 bugs and 0 code smells.
jbpm-6-examples Quality
Best in #Machine Learning
Average in #Machine Learning
jbpm-6-examples Quality
Best in #Machine Learning
Average in #Machine Learning

securitySecurity

  • jbpm-6-examples has no vulnerabilities reported, and its dependent libraries have no vulnerabilities reported.
  • jbpm-6-examples code analysis shows 0 unresolved vulnerabilities.
  • There are 0 security hotspots that need review.
jbpm-6-examples Security
Best in #Machine Learning
Average in #Machine Learning
jbpm-6-examples Security
Best in #Machine Learning
Average in #Machine Learning

license License

  • jbpm-6-examples is licensed under the Apache-2.0 License. This license is Permissive.
  • Permissive licenses have the least restrictions, and you can use them in most projects.
jbpm-6-examples License
Best in #Machine Learning
Average in #Machine Learning
jbpm-6-examples License
Best in #Machine Learning
Average in #Machine Learning

buildReuse

  • jbpm-6-examples releases are not available. You will need to build from source code and install.
  • jbpm-6-examples has no build file. You will be need to create the build yourself to build the component from source.
jbpm-6-examples Reuse
Best in #Machine Learning
Average in #Machine Learning
jbpm-6-examples Reuse
Best in #Machine Learning
Average in #Machine Learning
Top functions reviewed by kandi - BETA

kandi has reviewed jbpm-6-examples and discovered the below as its top functions. This is intended to give you an instant insight into jbpm-6-examples implemented functionality, and help decide if they suit your requirements.

  • Display a list of tasks .
    • Handle POST .
      • Renders a task .
        • Starts the business process .
          • Search for a task .
            • Gets the groups for a user
              • Init .
                • Produce entity manager factory .
                  • Produces a FacesContext .
                    • Produce audit task listener

                      Get all kandi verified functions for this library.

                      Get all kandi verified functions for this library.

                      jbpm-6-examples Key Features

                      rewards-basic

                      demonstrates jBPM EJB services in combination with servlets and JSP

                      rewards-cdi-jsf

                      demonstrates jBPM CDI services in combination with CDI beans and JSF

                      Community Discussions

                      Trending Discussions on Machine Learning
                      • Using RNN Trained Model without pytorch installed
                      • Flux.jl : Customizing optimizer
                      • How can I check a confusion_matrix after fine-tuning with custom datasets?
                      • CUDA OOM - But the numbers don't add upp?
                      • How to compare baseline and GridSearchCV results fair?
                      • Getting Error 524 while running jupyter lab in google cloud platform
                      • TypeError: brain.NeuralNetwork is not a constructor
                      • Ordinal Encoding or One-Hot-Encoding
                      • How to increase dimension-vector size of BERT sentence-transformers embedding
                      • How to identify what features affect predictions result?
                      Trending Discussions on Machine Learning

                      QUESTION

                      Using RNN Trained Model without pytorch installed

                      Asked 2022-Feb-28 at 20:17

                      I have trained an RNN model with pytorch. I need to use the model for prediction in an environment where I'm unable to install pytorch because of some strange dependency issue with glibc. However, I can install numpy and scipy and other libraries. So, I want to use the trained model, with the network definition, without pytorch.

                      I have the weights of the model as I save the model with its state dict and weights in the standard way, but I can also save it using just json/pickle files or similar.

                      I also have the network definition, which depends on pytorch in a number of ways. This is my RNN network definition.

                      import torch
                      import torch.nn as nn
                      import torch.nn.functional as F
                      import torch.optim as optim
                      import random
                      
                      torch.manual_seed(1)
                      random.seed(1)
                      device = torch.device('cpu')
                      
                      class RNN(nn.Module):
                        def __init__(self, input_size, hidden_size, output_size,num_layers, matching_in_out=False, batch_size=1):
                          super(RNN, self).__init__()
                          self.input_size = input_size
                          self.hidden_size = hidden_size
                          self.output_size = output_size
                          self.num_layers = num_layers
                          self.batch_size = batch_size
                          self.matching_in_out = matching_in_out #length of input vector matches the length of output vector 
                          self.lstm = nn.LSTM(input_size, hidden_size,num_layers)
                          self.hidden2out = nn.Linear(hidden_size, output_size)
                          self.hidden = self.init_hidden()
                        def forward(self, feature_list):
                          feature_list=torch.tensor(feature_list)
                          
                          if self.matching_in_out:
                            lstm_out, _ = self.lstm( feature_list.view(len( feature_list), 1, -1))
                            output_space = self.hidden2out(lstm_out.view(len( feature_list), -1))
                            output_scores = torch.sigmoid(output_space) #we'll need to check if we need this sigmoid
                            return output_scores #output_scores
                          else:
                            for i in range(len(feature_list)):
                              cur_ft_tensor=feature_list[i]#.view([1,1,self.input_size])
                              cur_ft_tensor=cur_ft_tensor.view([1,1,self.input_size])
                              lstm_out, self.hidden = self.lstm(cur_ft_tensor, self.hidden)
                              outs=self.hidden2out(lstm_out)
                            return outs
                        def init_hidden(self):
                          #return torch.rand(self.num_layers, self.batch_size, self.hidden_size)
                          return (torch.rand(self.num_layers, self.batch_size, self.hidden_size).to(device),
                                  torch.rand(self.num_layers, self.batch_size, self.hidden_size).to(device))
                      

                      I am aware of this question, but I'm willing to go as low level as possible. I can work with numpy array instead of tensors, and reshape instead of view, and I don't need a device setting.

                      Based on the class definition above, what I can see here is that I only need the following components from torch to get an output from the forward function:

                      • nn.LSTM
                      • nn.Linear
                      • torch.sigmoid

                      I think I can easily implement the sigmoid function using numpy. However, can I have some implementation for the nn.LSTM and nn.Linear using something not involving pytorch? Also, how will I use the weights from the state dict into the new class?

                      So, the question is, how can I "translate" this RNN definition into a class that doesn't need pytorch, and how to use the state dict weights for it? Alternatively, is there a "light" version of pytorch, that I can use just to run the model and yield a result?

                      EDIT

                      I think it might be useful to include the numpy/scipy equivalent for both nn.LSTM and nn.linear. It would help us compare the numpy output to torch output for the same code, and give us some modular code/functions to use. Specifically, a numpy equivalent for the following would be great:

                      rnn = nn.LSTM(10, 20, 2)
                      input = torch.randn(5, 3, 10)
                      h0 = torch.randn(2, 3, 20)
                      c0 = torch.randn(2, 3, 20)
                      output, (hn, cn) = rnn(input, (h0, c0))
                      

                      and also for linear:

                      m = nn.Linear(20, 30)
                      input = torch.randn(128, 20)
                      output = m(input)
                      

                      ANSWER

                      Answered 2022-Feb-17 at 10:47

                      You should try to export the model using torch.onnx. The page gives you an example that you can start with.

                      An alternative is to use TorchScript, but that requires torch libraries.

                      Both of these can be run without python. You can load torchscript in a C++ application https://pytorch.org/tutorials/advanced/cpp_export.html

                      ONNX is much more portable and you can use in languages such as C#, Java, or Javascript https://onnxruntime.ai/ (even on the browser)

                      A running example

                      Just modifying a little your example to go over the errors I found

                      Notice that via tracing any if/elif/else, for, while will be unrolled

                      import torch
                      import torch.nn as nn
                      import torch.nn.functional as F
                      import torch.optim as optim
                      import random
                      
                      torch.manual_seed(1)
                      random.seed(1)
                      device = torch.device('cpu')
                      
                      class RNN(nn.Module):
                        def __init__(self, input_size, hidden_size, output_size,num_layers, matching_in_out=False, batch_size=1):
                          super(RNN, self).__init__()
                          self.input_size = input_size
                          self.hidden_size = hidden_size
                          self.output_size = output_size
                          self.num_layers = num_layers
                          self.batch_size = batch_size
                          self.matching_in_out = matching_in_out #length of input vector matches the length of output vector 
                          self.lstm = nn.LSTM(input_size, hidden_size,num_layers)
                          self.hidden2out = nn.Linear(hidden_size, output_size)
                        def forward(self, x, h0, c0):
                          lstm_out, (hidden_a, hidden_b) = self.lstm(x, (h0, c0))
                          outs=self.hidden2out(lstm_out)
                          return outs, (hidden_a, hidden_b)
                        def init_hidden(self):
                          #return torch.rand(self.num_layers, self.batch_size, self.hidden_size)
                          return (torch.rand(self.num_layers, self.batch_size, self.hidden_size).to(device).detach(),
                                  torch.rand(self.num_layers, self.batch_size, self.hidden_size).to(device).detach())
                      
                      # convert the arguments passed during onnx.export call
                      class MWrapper(nn.Module):
                          def __init__(self, model):
                              super(MWrapper, self).__init__()
                              self.model = model;
                          def forward(self, kwargs):
                              return self.model(**kwargs)
                      

                      Run an example

                      rnn = RNN(10, 10, 10, 3)
                      X = torch.randn(3,1,10)
                      h0,c0  = rnn.init_hidden()
                      print(rnn(X, h0, c0)[0])
                      

                      Use the same input to trace the model and export an onnx file

                      
                      torch.onnx.export(MWrapper(rnn), {'x':X,'h0':h0,'c0':c0}, 'rnn.onnx', 
                                        dynamic_axes={'x':{1:'N'},
                                                     'c0':{1: 'N'},
                                                     'h0':{1: 'N'}
                                                     },
                                        input_names=['x', 'h0', 'c0'],
                                        output_names=['y', 'hn', 'cn']
                                       )
                      

                      Notice that you can use symbolic values for the dimensions of some axes of some inputs. Unspecified dimensions will be fixed with the values from the traced inputs. By default LSTM uses dimension 1 as batch.

                      Next we load the ONNX model and pass the same inputs

                      import onnxruntime
                      ort_model = onnxruntime.InferenceSession('rnn.onnx')
                      print(ort_model.run(['y'], {'x':X.numpy(), 'c0':c0.numpy(), 'h0':h0.numpy()}))
                      

                      Source https://stackoverflow.com/questions/71146140

                      Community Discussions, Code Snippets contain sources that include Stack Exchange Network

                      Vulnerabilities

                      No vulnerabilities reported

                      Install jbpm-6-examples

                      You can download it from GitHub.
                      You can use jbpm-6-examples like any standard Java library. Please include the the jar files in your classpath. You can also use any IDE and you can run and debug the jbpm-6-examples component as you would do with any other Java program. Best practice is to use a build tool that supports dependency management such as Maven or Gradle. For Maven installation, please refer maven.apache.org. For Gradle installation, please refer gradle.org .

                      Support

                      For any new features, suggestions and bugs create an issue on GitHub. If you have any questions check and ask questions on community page Stack Overflow .

                      DOWNLOAD this Library from

                      Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from
                      over 430 million Knowledge Items
                      Find more libraries
                      Reuse Solution Kits and Libraries Curated by Popular Use Cases
                      Explore Kits

                      Save this library and start creating your kit

                      Share this Page

                      share link
                      Consider Popular Machine Learning Libraries
                      Try Top Libraries by jsvitak
                      Compare Machine Learning Libraries with Highest Support
                      Compare Machine Learning Libraries with Highest Quality
                      Compare Machine Learning Libraries with Highest Security
                      Compare Machine Learning Libraries with Permissive License
                      Compare Machine Learning Libraries with Highest Reuse
                      Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from
                      over 430 million Knowledge Items
                      Find more libraries
                      Reuse Solution Kits and Libraries Curated by Popular Use Cases
                      Explore Kits

                      Save this library and start creating your kit

                      • © 2022 Open Weaver Inc.