kandi background
Explore Kits

generator | A code generator for MyBatis. | Generator Utils library

 by   mybatis Java Version: mybatis-generator-1.4.1 License: No License

 by   mybatis Java Version: mybatis-generator-1.4.1 License: No License

Download this library from

kandi X-RAY | generator Summary

generator is a Java library typically used in Generator, Generator Utils applications. generator has no bugs, it has no vulnerabilities and it has high support. However generator build file is not available. You can download it from GitHub, Maven.
[![Build Status](https://github.com/mybatis/generator/workflows/Java%20CI/badge.svg?branch=master)](https://github.com/mybatis/generator/actions?query=workflow%3A%22Java+CI%22) [![Coverage Status](https://coveralls.io/repos/mybatis/generator/badge.svg?branch=master&service=github)](https://coveralls.io/github/mybatis/generator?branch=master) [![Maven central](https://maven-badges.herokuapp.com/maven-central/org.mybatis.generator/mybatis-generator/badge.svg)](https://maven-badges.herokuapp.com/maven-central/org.mybatis.generator/mybatis-generator) [![Sonatype Nexus (Snapshots)](https://img.shields.io/nexus/s/https/oss.sonatype.org/org.mybatis.generator/mybatis-generator.svg)](https://oss.sonatype.org/content/repositories/snapshots/org/mybatis/generator/mybatis-generator/) [![License](http://img.shields.io/:license-apache-brightgreen.svg)](http://www.apache.org/licenses/LICENSE-2.0.html) [![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=mybatis_generator&metric=alert_status)](https://sonarcloud.io/dashboard?id=mybatis_generator) [![Security Rating](https://sonarcloud.io/api/project_badges/measure?project=mybatis_generator&metric=security_rating)](https://sonarcloud.io/dashboard?id=mybatis_generator). This is a code generator for MyBatis. This library will generate code for use with MyBatis. It will introspect a database table (or many tables) and will generate artifacts that can be used to access the table(s). This lessens the initial nuisance of setting up objects and configuration files to interact with database tables. MBG seeks to make a major impact on the large percentage of database operations that are simple CRUD (Create, Retrieve, Update, Delete). MBG can generate code in multiple styles (or "runtimes"). MBG can generate code for Java based projects, or for Kotlin based projects.
Support
Support
Quality
Quality
Security
Security
License
License
Reuse
Reuse

kandi-support Support

  • generator has a highly active ecosystem.
  • It has 4918 star(s) with 2473 fork(s). There are 373 watchers for this library.
  • There were 1 major release(s) in the last 6 months.
  • There are 4 open issues and 354 have been closed. On average issues are closed in 160 days. There are 1 open pull requests and 0 closed requests.
  • It has a positive sentiment in the developer community.
  • The latest version of generator is mybatis-generator-1.4.1
generator Support
Best in #Generator Utils
Average in #Generator Utils
generator Support
Best in #Generator Utils
Average in #Generator Utils

quality kandi Quality

  • generator has 0 bugs and 0 code smells.
generator Quality
Best in #Generator Utils
Average in #Generator Utils
generator Quality
Best in #Generator Utils
Average in #Generator Utils

securitySecurity

  • generator has no vulnerabilities reported, and its dependent libraries have no vulnerabilities reported.
  • generator code analysis shows 0 unresolved vulnerabilities.
  • There are 0 security hotspots that need review.
generator Security
Best in #Generator Utils
Average in #Generator Utils
generator Security
Best in #Generator Utils
Average in #Generator Utils

license License

  • generator does not have a standard license declared.
  • Check the repository for any license declaration and review the terms closely.
  • Without a license, all rights are reserved, and you cannot use the library in your applications.
generator License
Best in #Generator Utils
Average in #Generator Utils
generator License
Best in #Generator Utils
Average in #Generator Utils

buildReuse

  • generator releases are available to install and integrate.
  • Deployable package is available in Maven.
  • generator has no build file. You will be need to create the build yourself to build the component from source.
  • generator saves you 101364 person hours of effort in developing the same functionality from scratch.
  • It has 109299 lines of code, 5498 functions and 748 files.
  • It has medium code complexity. Code complexity directly impacts maintainability of the code.
generator Reuse
Best in #Generator Utils
Average in #Generator Utils
generator Reuse
Best in #Generator Utils
Average in #Generator Utils
Top functions reviewed by kandi - BETA

kandi has reviewed generator and discovered the below as its top functions. This is intended to give you an instant insight into generator implemented functionality, and help decide if they suit your requirements.

  • Create an inner class for the generated classes .
  • Parse the table configuration .
  • Generate the hash code .
  • Main entry point for testing .
  • Calculate the extra column information .
  • Execute the configuration .
  • Create a new source from an existing source file .
  • Generate the middle of each element .
  • Create the connection group .
  • Generate the compilation units .

generator Key Features

A code generator for MyBatis.

How can I make an object with an interface like a random number generator, but that actually generates a specified sequence?

copy iconCopydownload iconDownload
# make it a generator
def _rng():
    while True:
        yield np.random.randint(2,20)//2

# a non-random number generator
def _nrng():
    numbers = np.arange(1,10.5,0.5)
    for i in range(len(numbers)):
        yield numbers[i]

rng = _rng()
nrng = _nrng()
for j in range(10):
    print('random number', next(rng))
    print('non-random number', next(nrng))
-----------------------
class NotRandom:

    numbers = np.arange(1,10.5,0.5)
    last_index = -1

    @classmethod
    def nrng(cls):
        cls.last_index += 1
        if cls.last_index < len(cls.numbers):
            return cls.numbers[cls.last_index]
        # else:
        return None

# Create an alias to the classmethod
nrng = NotRandom.nrng      # Note this is OUTSIDE the class
print(nrng())    # 1.0
print(nrng())    # 1.5
print(nrng())    # 2.0
class NotRandom:
    def __init__(self):
        self.numbers = np.arange(1,10.5,0.5)
        self.last_index = -1

    def nrng(self):
        self.last_index += 1
        if self.last_index < len(self.numbers):
            return self.numbers[self.last_index]
        # else:
        return None

# Create an object. Then create an alias to its method
nrng = NotRandom().nrng 
another_notrandom = NotRandom()
nrng2 = another_notrandom.rng

print(nrng())    # 1.0
print(nrng())    # 1.5

print(nrng2())   # 1.0

print(nrng())    # 2.0

print(nrng2())   # 1.5

-----------------------
class NotRandom:

    numbers = np.arange(1,10.5,0.5)
    last_index = -1

    @classmethod
    def nrng(cls):
        cls.last_index += 1
        if cls.last_index < len(cls.numbers):
            return cls.numbers[cls.last_index]
        # else:
        return None

# Create an alias to the classmethod
nrng = NotRandom.nrng      # Note this is OUTSIDE the class
print(nrng())    # 1.0
print(nrng())    # 1.5
print(nrng())    # 2.0
class NotRandom:
    def __init__(self):
        self.numbers = np.arange(1,10.5,0.5)
        self.last_index = -1

    def nrng(self):
        self.last_index += 1
        if self.last_index < len(self.numbers):
            return self.numbers[self.last_index]
        # else:
        return None

# Create an object. Then create an alias to its method
nrng = NotRandom().nrng 
another_notrandom = NotRandom()
nrng2 = another_notrandom.rng

print(nrng())    # 1.0
print(nrng())    # 1.5

print(nrng2())   # 1.0

print(nrng())    # 2.0

print(nrng2())   # 1.5

-----------------------
class NotRandom:

    numbers = np.arange(1,10.5,0.5)
    last_index = -1

    @classmethod
    def nrng(cls):
        cls.last_index += 1
        if cls.last_index < len(cls.numbers):
            return cls.numbers[cls.last_index]
        # else:
        return None

# Create an alias to the classmethod
nrng = NotRandom.nrng      # Note this is OUTSIDE the class
print(nrng())    # 1.0
print(nrng())    # 1.5
print(nrng())    # 2.0
class NotRandom:
    def __init__(self):
        self.numbers = np.arange(1,10.5,0.5)
        self.last_index = -1

    def nrng(self):
        self.last_index += 1
        if self.last_index < len(self.numbers):
            return self.numbers[self.last_index]
        # else:
        return None

# Create an object. Then create an alias to its method
nrng = NotRandom().nrng 
another_notrandom = NotRandom()
nrng2 = another_notrandom.rng

print(nrng())    # 1.0
print(nrng())    # 1.5

print(nrng2())   # 1.0

print(nrng())    # 2.0

print(nrng2())   # 1.5

-----------------------
class NotRandom:

    numbers = np.arange(1,10.5,0.5)
    last_index = -1

    @classmethod
    def nrng(cls):
        cls.last_index += 1
        if cls.last_index < len(cls.numbers):
            return cls.numbers[cls.last_index]
        # else:
        return None

# Create an alias to the classmethod
nrng = NotRandom.nrng      # Note this is OUTSIDE the class
print(nrng())    # 1.0
print(nrng())    # 1.5
print(nrng())    # 2.0
class NotRandom:
    def __init__(self):
        self.numbers = np.arange(1,10.5,0.5)
        self.last_index = -1

    def nrng(self):
        self.last_index += 1
        if self.last_index < len(self.numbers):
            return self.numbers[self.last_index]
        # else:
        return None

# Create an object. Then create an alias to its method
nrng = NotRandom().nrng 
another_notrandom = NotRandom()
nrng2 = another_notrandom.rng

print(nrng())    # 1.0
print(nrng())    # 1.5

print(nrng2())   # 1.0

print(nrng())    # 2.0

print(nrng2())   # 1.5

-----------------------
def nrng_gen():
    yield from range(10)

nrng = nrng_gen()

nrng_func = lambda: next(nrng)

for i in range(10):
    print(nrng_func())
class NRNG:
    def __init__(self):
        self.numbers = range(10)
        self.state = -1
    def __call__(self):
        self.state += 1
        return self.numbers[self.state]
        
nrng = NRNG()


for i in range(10):
    print(nrng())
-----------------------
def nrng_gen():
    yield from range(10)

nrng = nrng_gen()

nrng_func = lambda: next(nrng)

for i in range(10):
    print(nrng_func())
class NRNG:
    def __init__(self):
        self.numbers = range(10)
        self.state = -1
    def __call__(self):
        self.state += 1
        return self.numbers[self.state]
        
nrng = NRNG()


for i in range(10):
    print(nrng())
-----------------------
that_function(nrng().__next__)
that_function(partial(next, nrng()))
that_function(iter(np.arange(1,10.5,0.5)).__next__)
import numpy as np
from functools import partial

# a random number generator
rng = lambda : np.random.randint(2,20)//2

# a non-random number generator
def nrng():
    numbers = np.arange(1,10.5,0.5)
    for i in range(len(numbers)):
        yield numbers[i]

def that_function(rng):
    print(*(rng() for j in range(10)))

that_function(rng)
that_function(nrng().__next__)
that_function(iter(np.arange(1,10.5,0.5)).__next__)
that_function(partial(next, nrng()))
4 6 1 3 8 7 3 6 2 1
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
-----------------------
that_function(nrng().__next__)
that_function(partial(next, nrng()))
that_function(iter(np.arange(1,10.5,0.5)).__next__)
import numpy as np
from functools import partial

# a random number generator
rng = lambda : np.random.randint(2,20)//2

# a non-random number generator
def nrng():
    numbers = np.arange(1,10.5,0.5)
    for i in range(len(numbers)):
        yield numbers[i]

def that_function(rng):
    print(*(rng() for j in range(10)))

that_function(rng)
that_function(nrng().__next__)
that_function(iter(np.arange(1,10.5,0.5)).__next__)
that_function(partial(next, nrng()))
4 6 1 3 8 7 3 6 2 1
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
-----------------------
that_function(nrng().__next__)
that_function(partial(next, nrng()))
that_function(iter(np.arange(1,10.5,0.5)).__next__)
import numpy as np
from functools import partial

# a random number generator
rng = lambda : np.random.randint(2,20)//2

# a non-random number generator
def nrng():
    numbers = np.arange(1,10.5,0.5)
    for i in range(len(numbers)):
        yield numbers[i]

def that_function(rng):
    print(*(rng() for j in range(10)))

that_function(rng)
that_function(nrng().__next__)
that_function(iter(np.arange(1,10.5,0.5)).__next__)
that_function(partial(next, nrng()))
4 6 1 3 8 7 3 6 2 1
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
-----------------------
that_function(nrng().__next__)
that_function(partial(next, nrng()))
that_function(iter(np.arange(1,10.5,0.5)).__next__)
import numpy as np
from functools import partial

# a random number generator
rng = lambda : np.random.randint(2,20)//2

# a non-random number generator
def nrng():
    numbers = np.arange(1,10.5,0.5)
    for i in range(len(numbers)):
        yield numbers[i]

def that_function(rng):
    print(*(rng() for j in range(10)))

that_function(rng)
that_function(nrng().__next__)
that_function(iter(np.arange(1,10.5,0.5)).__next__)
that_function(partial(next, nrng()))
4 6 1 3 8 7 3 6 2 1
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
-----------------------
that_function(nrng().__next__)
that_function(partial(next, nrng()))
that_function(iter(np.arange(1,10.5,0.5)).__next__)
import numpy as np
from functools import partial

# a random number generator
rng = lambda : np.random.randint(2,20)//2

# a non-random number generator
def nrng():
    numbers = np.arange(1,10.5,0.5)
    for i in range(len(numbers)):
        yield numbers[i]

def that_function(rng):
    print(*(rng() for j in range(10)))

that_function(rng)
that_function(nrng().__next__)
that_function(iter(np.arange(1,10.5,0.5)).__next__)
that_function(partial(next, nrng()))
4 6 1 3 8 7 3 6 2 1
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
-----------------------
>>> def f():
        yield 10
        yield 20
        yield 30
    
>>> g = f().__next__
>>> g()
10
>>> g()
20
>>> g()
30
-----------------------
# Get the first n numbers (10 in this case)

for i,j in enumerate(nrng()):  
    if i > 9:
        break
    print('random number', rng())
    print('non-random number', j)
    
# Or this if you want to get all numbers in nrng()

for j in nrng():
    print('random number', rng())
    print('non-random number', j)

Why is `np.sum(range(N))` very slow?

copy iconCopydownload iconDownload
/* Fast addition by keeping temporary sums in C instead of new Python objects.
   Assumes all inputs are the same type.  If the assumption fails, default
   to the more general routine.
*/
from functools import singledispatch

def sum_range(range_, /, start=0):
    """Overloaded `sum` for range, compute arithmetic sum"""
    n = len(range_)
    if not n:
        return start
    return int(start + (n * (range_[0] + range_[-1]) / 2))

sum = singledispatch(sum)
sum.register(range, sum_range)

def test():
    """
    >>> sum(range(0, 100))
    4950
    >>> sum(range(0, 10, 2))
    20
    >>> sum(range(0, 9, 2))
    20
    >>> sum(range(0, -10, -1))
    -45
    >>> sum(range(-10, 10))
    -10
    >>> sum(range(-1, -100, -2))
    -2500
    >>> sum(range(0, 10, 100))
    0
    >>> sum(range(0, 0))
    0
    >>> sum(range(0, 100), 50)
    5000
    >>> sum(range(0, 0), 10)
    10
    """

if __name__ == "__main__":
    import doctest
    doctest.testmod()
-----------------------
/* Fast addition by keeping temporary sums in C instead of new Python objects.
   Assumes all inputs are the same type.  If the assumption fails, default
   to the more general routine.
*/
from functools import singledispatch

def sum_range(range_, /, start=0):
    """Overloaded `sum` for range, compute arithmetic sum"""
    n = len(range_)
    if not n:
        return start
    return int(start + (n * (range_[0] + range_[-1]) / 2))

sum = singledispatch(sum)
sum.register(range, sum_range)

def test():
    """
    >>> sum(range(0, 100))
    4950
    >>> sum(range(0, 10, 2))
    20
    >>> sum(range(0, 9, 2))
    20
    >>> sum(range(0, -10, -1))
    -45
    >>> sum(range(-10, 10))
    -10
    >>> sum(range(-1, -100, -2))
    -2500
    >>> sum(range(0, 10, 100))
    0
    >>> sum(range(0, 0))
    0
    >>> sum(range(0, 100), 50)
    5000
    >>> sum(range(0, 0), 10)
    10
    """

if __name__ == "__main__":
    import doctest
    doctest.testmod()
-----------------------
# sum_range:          1.4830789409988938
# sum_rangelist:      3.6745876889999636
%%timeit x = list(range(N))
    ...: sum(x)
# npsum_range:        16.216972655000063
# npsum_fromiterrange:3.47655400199983
# sum_arange:         16.656015603000924
# sum_list_arange:    19.500842117000502
# sum_arange_tolist:  4.004777374000696
# npsum_arange:       0.2332638230000157
# array_basic:        16.1631146109994
# array_dtype:        16.550737804000164
# array_iter:         3.9803170430004684
-----------------------
# sum_range:          1.4830789409988938
# sum_rangelist:      3.6745876889999636
%%timeit x = list(range(N))
    ...: sum(x)
# npsum_range:        16.216972655000063
# npsum_fromiterrange:3.47655400199983
# sum_arange:         16.656015603000924
# sum_list_arange:    19.500842117000502
# sum_arange_tolist:  4.004777374000696
# npsum_arange:       0.2332638230000157
# array_basic:        16.1631146109994
# array_dtype:        16.550737804000164
# array_iter:         3.9803170430004684
-----------------------
# sum_range:          1.4830789409988938
# sum_rangelist:      3.6745876889999636
%%timeit x = list(range(N))
    ...: sum(x)
# npsum_range:        16.216972655000063
# npsum_fromiterrange:3.47655400199983
# sum_arange:         16.656015603000924
# sum_list_arange:    19.500842117000502
# sum_arange_tolist:  4.004777374000696
# npsum_arange:       0.2332638230000157
# array_basic:        16.1631146109994
# array_dtype:        16.550737804000164
# array_iter:         3.9803170430004684
-----------------------
# sum_range:          1.4830789409988938
# sum_rangelist:      3.6745876889999636
%%timeit x = list(range(N))
    ...: sum(x)
# npsum_range:        16.216972655000063
# npsum_fromiterrange:3.47655400199983
# sum_arange:         16.656015603000924
# sum_list_arange:    19.500842117000502
# sum_arange_tolist:  4.004777374000696
# npsum_arange:       0.2332638230000157
# array_basic:        16.1631146109994
# array_dtype:        16.550737804000164
# array_iter:         3.9803170430004684
-----------------------
# sum_range:          1.4830789409988938
# sum_rangelist:      3.6745876889999636
%%timeit x = list(range(N))
    ...: sum(x)
# npsum_range:        16.216972655000063
# npsum_fromiterrange:3.47655400199983
# sum_arange:         16.656015603000924
# sum_list_arange:    19.500842117000502
# sum_arange_tolist:  4.004777374000696
# npsum_arange:       0.2332638230000157
# array_basic:        16.1631146109994
# array_dtype:        16.550737804000164
# array_iter:         3.9803170430004684
-----------------------
# sum_range:          1.4830789409988938
# sum_rangelist:      3.6745876889999636
%%timeit x = list(range(N))
    ...: sum(x)
# npsum_range:        16.216972655000063
# npsum_fromiterrange:3.47655400199983
# sum_arange:         16.656015603000924
# sum_list_arange:    19.500842117000502
# sum_arange_tolist:  4.004777374000696
# npsum_arange:       0.2332638230000157
# array_basic:        16.1631146109994
# array_dtype:        16.550737804000164
# array_iter:         3.9803170430004684
-----------------------
# sum_range:          1.4830789409988938
# sum_rangelist:      3.6745876889999636
%%timeit x = list(range(N))
    ...: sum(x)
# npsum_range:        16.216972655000063
# npsum_fromiterrange:3.47655400199983
# sum_arange:         16.656015603000924
# sum_list_arange:    19.500842117000502
# sum_arange_tolist:  4.004777374000696
# npsum_arange:       0.2332638230000157
# array_basic:        16.1631146109994
# array_dtype:        16.550737804000164
# array_iter:         3.9803170430004684
-----------------------
# sum_range:          1.4830789409988938
# sum_rangelist:      3.6745876889999636
%%timeit x = list(range(N))
    ...: sum(x)
# npsum_range:        16.216972655000063
# npsum_fromiterrange:3.47655400199983
# sum_arange:         16.656015603000924
# sum_list_arange:    19.500842117000502
# sum_arange_tolist:  4.004777374000696
# npsum_arange:       0.2332638230000157
# array_basic:        16.1631146109994
# array_dtype:        16.550737804000164
# array_iter:         3.9803170430004684
-----------------------
# sum_range:          1.4830789409988938
# sum_rangelist:      3.6745876889999636
%%timeit x = list(range(N))
    ...: sum(x)
# npsum_range:        16.216972655000063
# npsum_fromiterrange:3.47655400199983
# sum_arange:         16.656015603000924
# sum_list_arange:    19.500842117000502
# sum_arange_tolist:  4.004777374000696
# npsum_arange:       0.2332638230000157
# array_basic:        16.1631146109994
# array_dtype:        16.550737804000164
# array_iter:         3.9803170430004684
-----------------------
# sum_range:          1.4830789409988938
# sum_rangelist:      3.6745876889999636
%%timeit x = list(range(N))
    ...: sum(x)
# npsum_range:        16.216972655000063
# npsum_fromiterrange:3.47655400199983
# sum_arange:         16.656015603000924
# sum_list_arange:    19.500842117000502
# sum_arange_tolist:  4.004777374000696
# npsum_arange:       0.2332638230000157
# array_basic:        16.1631146109994
# array_dtype:        16.550737804000164
# array_iter:         3.9803170430004684
-----------------------
tmp = list(range(10_000_000))

# Numpy implicitly convert the list in a Numpy array but 
# still automatically detect the input type to use
np.sum(tmp)
tmp = list(range(10_000_000))

# The array is explicitly converted using a well-defined type and 
# thus there is no need to perform an automatic detection 
# (note that the result is still wrong since it does not fit in a np.int32)
tmp2 = np.array(tmp, dtype=np.int32)
result = np.sum(tmp2)
-----------------------
tmp = list(range(10_000_000))

# Numpy implicitly convert the list in a Numpy array but 
# still automatically detect the input type to use
np.sum(tmp)
tmp = list(range(10_000_000))

# The array is explicitly converted using a well-defined type and 
# thus there is no need to perform an automatic detection 
# (note that the result is still wrong since it does not fit in a np.int32)
tmp2 = np.array(tmp, dtype=np.int32)
result = np.sum(tmp2)

How would you implement a lazy &quot;range factory&quot; for C++20 ranges that just calls a generator function?

copy iconCopydownload iconDownload
class iterator {
 public:
  using value_type = decltype(std::declval<F>()());
  using difference_type = std::ptrdiff_t;
  iterator() = default;
  void operator++(int);
  bool operator==(const iterator&) const {
    return false;
  }
  // ...
};
template<typename F>
class generate2 : public std::ranges::view_interface<generate2<F>> {
 public:
  auto begin() {
    value_ = generator_func_();
    return iterator{*this};
  }

  std::default_sentinel_t end() const noexcept { return std::default_sentinel; }

  class iterator {
   public:
   //...
    value_type operator*() const {
      return parent_->value_;
    }
   private:
    generate2* parent_;
  };

 private:
   F generator_func_;
   std::remove_cvref_t<std::invoke_result_t<F&>> value_; 
};
-----------------------
class iterator {
 public:
  using value_type = decltype(std::declval<F>()());
  using difference_type = std::ptrdiff_t;
  iterator() = default;
  void operator++(int);
  bool operator==(const iterator&) const {
    return false;
  }
  // ...
};
template<typename F>
class generate2 : public std::ranges::view_interface<generate2<F>> {
 public:
  auto begin() {
    value_ = generator_func_();
    return iterator{*this};
  }

  std::default_sentinel_t end() const noexcept { return std::default_sentinel; }

  class iterator {
   public:
   //...
    value_type operator*() const {
      return parent_->value_;
    }
   private:
    generate2* parent_;
  };

 private:
   F generator_func_;
   std::remove_cvref_t<std::invoke_result_t<F&>> value_; 
};

Error [ERR_PACKAGE_PATH_NOT_EXPORTED]: Package subpath './lib/tokenize' is not defined by &quot;exports&quot; in the package.json of a module in node_modules

copy iconCopydownload iconDownload
nvm uninstall <version>
nvm uninstall v17.0.1
nvm install --lts
-----------------------
nvm uninstall <version>
nvm uninstall v17.0.1
nvm install --lts
-----------------------
nvm uninstall <version>
nvm uninstall v17.0.1
nvm install --lts
-----------------------
npm install -g n
sudo n stable
sudo n 16.8.0
export N_PREFIX=$HOME/.n
export PATH=$N_PREFIX/bin:$PATH
-----------------------
npm install -g n
sudo n stable
sudo n 16.8.0
export N_PREFIX=$HOME/.n
export PATH=$N_PREFIX/bin:$PATH
-----------------------
npm install -g n
sudo n stable
sudo n 16.8.0
export N_PREFIX=$HOME/.n
export PATH=$N_PREFIX/bin:$PATH
-----------------------
npm install -g n
sudo n stable
sudo n 16.8.0
export N_PREFIX=$HOME/.n
export PATH=$N_PREFIX/bin:$PATH
-----------------------
npm audit fix --force 
npm install react-scripts@latest
-----------------------
npm audit fix --force 
npm install react-scripts@latest
-----------------------
npm update
npm start
-----------------------
rm -rf node_modules yarn.lock
yarn add -D react-scripts@latest
yarn build
rm -rf node_modules package-lock.json
npm install -D react-scripts@latest
npm install
npm run build
-----------------------
rm -rf node_modules yarn.lock
yarn add -D react-scripts@latest
yarn build
rm -rf node_modules package-lock.json
npm install -D react-scripts@latest
npm install
npm run build
-----------------------
brew uninstall --ignore-dependencies node
brew install node@16
brew link node@16
-----------------------
brew uninstall node
-----------------------
npm install 
`npm install --legacy-peer-deps`
npm start
-----------------------
npm install 
`npm install --legacy-peer-deps`
npm start
-----------------------
npm install 
`npm install --legacy-peer-deps`
npm start
-----------------------
npm install react@latest react-dom@latest
npm install next@12

Can you compress angular image assets on build?

copy iconCopydownload iconDownload
const { src, dest } = require("gulp");
const sharpResponsive = require("gulp-sharp-responsive");

const compress = () =>
  src("images/*.{png,jpg}")
    .pipe(
      sharpResponsive({
        formats: [
          // jpeg
          { width: 256, format: "jpeg", rename: { suffix: "-256" } },
          { width: 512, format: "jpeg", rename: { suffix: "-512" } },
          { width: 1024, format: "jpeg", rename: { suffix: "-1024" } },
          // webp
          { width: 256, format: "webp", rename: { suffix: "-256" } },
          { width: 512, format: "webp", rename: { suffix: "-512" } },
          { width: 1024, format: "webp", rename: { suffix: "-1024" } },
          // avif
          { width: 256, format: "avif", rename: { suffix: "-256" } },
          { width: 512, format: "avif", rename: { suffix: "-512" } },
          { width: 1024, format: "avif", rename: { suffix: "-1024" } },
        ],
      })
    )
    .pipe(dest("src/assets/compressed"));

module.exports = {
  compress,
};
"scripts": {
  "prebuild": "gulp compress",
  // ...
},
<!-- {{image}} is the image name -->
<picture *ngIf="image">
  <!-- avif -->
  <source
    srcset="assets/compressed/{{image}}-256.avif"
    media="(max-width: 512px)"
    type="image/avif"
  />
  <source
    srcset="assets/compressed/{{image}}-512.avif"
    media="(max-width: 1024px)"
    type="image/avif"
  />
  <source
    srcset="assets/compressed/{{image}}-1024.avif"
    media="(max-width: 2048px)"
    type="image/avif"
  />
  <!-- webp -->
  <source
    srcset="assets/compressed/{{image}}-256.webp"
    media="(max-width: 512px)"
    type="image/webp"
  />
  <source
    srcset="assets/compressed/{{image}}-512.webp"
    media="(max-width: 1024px)"
    type="image/webp"
  />
  <source
    srcset="assets/compressed/{{image}}-1024.webp"
    media="(max-width: 2048px)"
    type="image/webp"
  />
  <!-- jpeg -->
  <source
    srcset="assets/compressed/{{image}}-256.jpg"
    media="(max-width: 512px)"
    type="image/jpeg"
  />
  <source
    srcset="assets/compressed/{{image}}-512.jpg"
    media="(max-width: 1024px)"
    type="image/jpeg"
  />
  <source
    srcset="assets/compressed/{{image}}-1024.jpg"
    media="(max-width: 2048px)"
    type="image/jpeg"
  />
  <!-- original -->
  <img src="assets/compressed/{{ image }}-1024.jpg" />
</picture>

-----------------------
const { src, dest } = require("gulp");
const sharpResponsive = require("gulp-sharp-responsive");

const compress = () =>
  src("images/*.{png,jpg}")
    .pipe(
      sharpResponsive({
        formats: [
          // jpeg
          { width: 256, format: "jpeg", rename: { suffix: "-256" } },
          { width: 512, format: "jpeg", rename: { suffix: "-512" } },
          { width: 1024, format: "jpeg", rename: { suffix: "-1024" } },
          // webp
          { width: 256, format: "webp", rename: { suffix: "-256" } },
          { width: 512, format: "webp", rename: { suffix: "-512" } },
          { width: 1024, format: "webp", rename: { suffix: "-1024" } },
          // avif
          { width: 256, format: "avif", rename: { suffix: "-256" } },
          { width: 512, format: "avif", rename: { suffix: "-512" } },
          { width: 1024, format: "avif", rename: { suffix: "-1024" } },
        ],
      })
    )
    .pipe(dest("src/assets/compressed"));

module.exports = {
  compress,
};
"scripts": {
  "prebuild": "gulp compress",
  // ...
},
<!-- {{image}} is the image name -->
<picture *ngIf="image">
  <!-- avif -->
  <source
    srcset="assets/compressed/{{image}}-256.avif"
    media="(max-width: 512px)"
    type="image/avif"
  />
  <source
    srcset="assets/compressed/{{image}}-512.avif"
    media="(max-width: 1024px)"
    type="image/avif"
  />
  <source
    srcset="assets/compressed/{{image}}-1024.avif"
    media="(max-width: 2048px)"
    type="image/avif"
  />
  <!-- webp -->
  <source
    srcset="assets/compressed/{{image}}-256.webp"
    media="(max-width: 512px)"
    type="image/webp"
  />
  <source
    srcset="assets/compressed/{{image}}-512.webp"
    media="(max-width: 1024px)"
    type="image/webp"
  />
  <source
    srcset="assets/compressed/{{image}}-1024.webp"
    media="(max-width: 2048px)"
    type="image/webp"
  />
  <!-- jpeg -->
  <source
    srcset="assets/compressed/{{image}}-256.jpg"
    media="(max-width: 512px)"
    type="image/jpeg"
  />
  <source
    srcset="assets/compressed/{{image}}-512.jpg"
    media="(max-width: 1024px)"
    type="image/jpeg"
  />
  <source
    srcset="assets/compressed/{{image}}-1024.jpg"
    media="(max-width: 2048px)"
    type="image/jpeg"
  />
  <!-- original -->
  <img src="assets/compressed/{{ image }}-1024.jpg" />
</picture>

-----------------------
const { src, dest } = require("gulp");
const sharpResponsive = require("gulp-sharp-responsive");

const compress = () =>
  src("images/*.{png,jpg}")
    .pipe(
      sharpResponsive({
        formats: [
          // jpeg
          { width: 256, format: "jpeg", rename: { suffix: "-256" } },
          { width: 512, format: "jpeg", rename: { suffix: "-512" } },
          { width: 1024, format: "jpeg", rename: { suffix: "-1024" } },
          // webp
          { width: 256, format: "webp", rename: { suffix: "-256" } },
          { width: 512, format: "webp", rename: { suffix: "-512" } },
          { width: 1024, format: "webp", rename: { suffix: "-1024" } },
          // avif
          { width: 256, format: "avif", rename: { suffix: "-256" } },
          { width: 512, format: "avif", rename: { suffix: "-512" } },
          { width: 1024, format: "avif", rename: { suffix: "-1024" } },
        ],
      })
    )
    .pipe(dest("src/assets/compressed"));

module.exports = {
  compress,
};
"scripts": {
  "prebuild": "gulp compress",
  // ...
},
<!-- {{image}} is the image name -->
<picture *ngIf="image">
  <!-- avif -->
  <source
    srcset="assets/compressed/{{image}}-256.avif"
    media="(max-width: 512px)"
    type="image/avif"
  />
  <source
    srcset="assets/compressed/{{image}}-512.avif"
    media="(max-width: 1024px)"
    type="image/avif"
  />
  <source
    srcset="assets/compressed/{{image}}-1024.avif"
    media="(max-width: 2048px)"
    type="image/avif"
  />
  <!-- webp -->
  <source
    srcset="assets/compressed/{{image}}-256.webp"
    media="(max-width: 512px)"
    type="image/webp"
  />
  <source
    srcset="assets/compressed/{{image}}-512.webp"
    media="(max-width: 1024px)"
    type="image/webp"
  />
  <source
    srcset="assets/compressed/{{image}}-1024.webp"
    media="(max-width: 2048px)"
    type="image/webp"
  />
  <!-- jpeg -->
  <source
    srcset="assets/compressed/{{image}}-256.jpg"
    media="(max-width: 512px)"
    type="image/jpeg"
  />
  <source
    srcset="assets/compressed/{{image}}-512.jpg"
    media="(max-width: 1024px)"
    type="image/jpeg"
  />
  <source
    srcset="assets/compressed/{{image}}-1024.jpg"
    media="(max-width: 2048px)"
    type="image/jpeg"
  />
  <!-- original -->
  <img src="assets/compressed/{{ image }}-1024.jpg" />
</picture>

Convert a bytes iterable to an iterable of str, where each value is a line

copy iconCopydownload iconDownload
import re
find_rule = re.compile("([^\r\n]*)(\r\n|\r|\n)?")


def converter(byte_data):
    left_d = ""
    for d in byte_data:
        # Used to save the previous match result in the `for` loop
        prev_result = None
        # Concatenate the last part of the previous data with the current data,
        # used to deal with the case of `\r\n` being separated.
        d = left_d + d.decode()
        left_d = ""
        # Using `find_rule.finditer` the last value("") will be invalid
        for match_result in find_rule.finditer(d):
            i = match_result.group()
            if not i:
                # The program comes to this point, indicating that i == "", which is the last matching value
                left_d, prev_result = prev_result.group(), None
                continue
            if prev_result:
                if prev_result.group(2) is None:
                    # The program goes here, represented as the last valid value matched
                    left_d = prev_result.group()
                else:
                    # Returns the previous matched value
                    yield prev_result.group()
            # Save the current match result
            prev_result = match_result

    else:
        yield left_d


for i in (converter(iter((
        b'col_1,\r',
        b'\nc',
        b'ol_2\n1',
        b'\n,"val;\r',
        b'ue"\n')))
):
    print(repr(i))

'col_1,\r\n'
'col_2\n'
'1\n'
',"val;\r'
'ue"\n'
-----------------------
import re
find_rule = re.compile("([^\r\n]*)(\r\n|\r|\n)?")


def converter(byte_data):
    left_d = ""
    for d in byte_data:
        # Used to save the previous match result in the `for` loop
        prev_result = None
        # Concatenate the last part of the previous data with the current data,
        # used to deal with the case of `\r\n` being separated.
        d = left_d + d.decode()
        left_d = ""
        # Using `find_rule.finditer` the last value("") will be invalid
        for match_result in find_rule.finditer(d):
            i = match_result.group()
            if not i:
                # The program comes to this point, indicating that i == "", which is the last matching value
                left_d, prev_result = prev_result.group(), None
                continue
            if prev_result:
                if prev_result.group(2) is None:
                    # The program goes here, represented as the last valid value matched
                    left_d = prev_result.group()
                else:
                    # Returns the previous matched value
                    yield prev_result.group()
            # Save the current match result
            prev_result = match_result

    else:
        yield left_d


for i in (converter(iter((
        b'col_1,\r',
        b'\nc',
        b'ol_2\n1',
        b'\n,"val;\r',
        b'ue"\n')))
):
    print(repr(i))

'col_1,\r\n'
'col_2\n'
'1\n'
',"val;\r'
'ue"\n'
-----------------------
class ReadableIterator(io.IOBase):
    def __init__(self, it):
        self.it = iter(it)
    def read(self, n):
        # ignore argument, nobody actually cares
        # note that it is *critical* that we suppress the `StopIteration` here
        return next(self.it, b'')
    def readable(self):
        return True
-----------------------
from itertools import groupby, chain

bytes_iter = (
    b'col_1,',
    b'c',
    b'ol_2\n',
    b'1,"val;',
    b'ue"\n'
)

def make_strings(G):
    strings = chain.from_iterable(map(bytes.decode, G))
    for k, g in groupby(strings, key=lambda c: c not in '\n\r'):
        if k:
            yield ''.join(g)                            

list(make_strings(bytes_iter))
# ['col_1,col_2', '1,"val;ue"']
-----------------------
import codecs
import csv
import io

def yield_bytes():
    chunks = [
        b'col_1,',
        b'c',
        b'ol_2\n1',
        b',"val',
        b'ue"\n',
        b'Hello,'
        b'\xe4\xb8',
        b'\x96',
        b'\xe7',
        b'\x95\x8c\n'
        b'\n'
    ]

    for chunk in chunks:
        yield(chunk)

decoder = codecs.getincrementaldecoder('utf-8')()

def yield_encoded_bytes():
    s = None
    for bytes in yield_bytes():
        s = decoder.decode(bytes, final=False)
        if s:
            yield s.encode('utf-8')

class ReadableIterator(io.IOBase):
    def __init__(self, it):
        self.it = iter(it)
    def read(self, n):
        # ignore argument, nobody actually cares
        # note that it is *critical* that we suppress the `StopIteration` here
        return next(self.it, b'')
    def readable(self):
        return True

f = io.TextIOWrapper(ReadableIterator(yield_encoded_bytes()))

for row in csv.reader(f):
    print(row)
['col_1', 'col_2']
['1', 'value']
['Hello', '世界']
[]
-----------------------
import codecs
import csv
import io

def yield_bytes():
    chunks = [
        b'col_1,',
        b'c',
        b'ol_2\n1',
        b',"val',
        b'ue"\n',
        b'Hello,'
        b'\xe4\xb8',
        b'\x96',
        b'\xe7',
        b'\x95\x8c\n'
        b'\n'
    ]

    for chunk in chunks:
        yield(chunk)

decoder = codecs.getincrementaldecoder('utf-8')()

def yield_encoded_bytes():
    s = None
    for bytes in yield_bytes():
        s = decoder.decode(bytes, final=False)
        if s:
            yield s.encode('utf-8')

class ReadableIterator(io.IOBase):
    def __init__(self, it):
        self.it = iter(it)
    def read(self, n):
        # ignore argument, nobody actually cares
        # note that it is *critical* that we suppress the `StopIteration` here
        return next(self.it, b'')
    def readable(self):
        return True

f = io.TextIOWrapper(ReadableIterator(yield_encoded_bytes()))

for row in csv.reader(f):
    print(row)
['col_1', 'col_2']
['1', 'value']
['Hello', '世界']
[]

Problem Updating to .Net 6 - Encrypting String

copy iconCopydownload iconDownload
using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
{
    var plainTextBytes = new byte[cipherTextBytes.Length];
    var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
    memoryStream.Close();
    cryptoStream.Close();
    return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
}
using (var plainTextStream = new MemoryStream())
{
    cryptoStream.CopyTo(plainTextStream);
    var plainTextBytes = plainTextStream.ToArray();
    return Encoding.UTF8.GetString(plainTextBytes, 0, plainTextBytes.Length);
} 
using (var plainTextReader = new StreamReader(cryptoStream))
{
    return plainTextReader.ReadToEnd();
}  
-----------------------
using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
{
    var plainTextBytes = new byte[cipherTextBytes.Length];
    var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
    memoryStream.Close();
    cryptoStream.Close();
    return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
}
using (var plainTextStream = new MemoryStream())
{
    cryptoStream.CopyTo(plainTextStream);
    var plainTextBytes = plainTextStream.ToArray();
    return Encoding.UTF8.GetString(plainTextBytes, 0, plainTextBytes.Length);
} 
using (var plainTextReader = new StreamReader(cryptoStream))
{
    return plainTextReader.ReadToEnd();
}  
-----------------------
using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
{
    var plainTextBytes = new byte[cipherTextBytes.Length];
    var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
    memoryStream.Close();
    cryptoStream.Close();
    return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
}
using (var plainTextStream = new MemoryStream())
{
    cryptoStream.CopyTo(plainTextStream);
    var plainTextBytes = plainTextStream.ToArray();
    return Encoding.UTF8.GetString(plainTextBytes, 0, plainTextBytes.Length);
} 
using (var plainTextReader = new StreamReader(cryptoStream))
{
    return plainTextReader.ReadToEnd();
}  
-----------------------
var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
return new StreamReader(cryptoStream).ReadToEnd();
-----------------------
var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
return new StreamReader(cryptoStream).ReadToEnd();
-----------------------
int totalRead = 0;
int maxRead = 16;
while (totalRead < plainTextBytes.Length)
{
    var countLeft = plainTextBytes.Length - totalRead;
    var count = countLeft < 16 ? countLeft : maxRead;
    int bytesRead = cryptoStream.Read(plainTextBytes, totalRead, count);
    totalRead += bytesRead;
    if (bytesRead == 0) break;
}

Ensure that an argument can be iterated twice

copy iconCopydownload iconDownload
if isinstance(x, zip):
  x = list(x)
-----------------------
def print_twice(x):
    val = x
    for i in range(2):
        for i in val: print(i)
-----------------------
def print_twice(x):
    x = list(x)
    for i in x: print(i)
    for i in x: print(i)
from collections.abc import Collection

x = list(x) if not isinstance(x, Collection) else x
from collections.abc import Iterator

x = list(x) if isinstance(x, Iterator) else x
x = list(x) if iter(x) is x else x
-----------------------
def print_twice(x):
    x = list(x)
    for i in x: print(i)
    for i in x: print(i)
from collections.abc import Collection

x = list(x) if not isinstance(x, Collection) else x
from collections.abc import Iterator

x = list(x) if isinstance(x, Iterator) else x
x = list(x) if iter(x) is x else x
-----------------------
def print_twice(x):
    x = list(x)
    for i in x: print(i)
    for i in x: print(i)
from collections.abc import Collection

x = list(x) if not isinstance(x, Collection) else x
from collections.abc import Iterator

x = list(x) if isinstance(x, Iterator) else x
x = list(x) if iter(x) is x else x
-----------------------
def is_iterator(x):
    return iter(x) is x

for obj in [
    # not iterators
    [1, 2, 3],
    (1, 2, 3),
    {1: 2, 3: 4},
    range(3),
    # iterators
    (x for x in range(3)),
    iter([1, 2, 3]),
    zip([1, 2], [3, 4]),
    filter(lambda x: x % 2 == 0, [1, 2, 3]),
    map(lambda x: 2 * x, [1, 2, 3]),
]:
    name = type(obj).__name__
    if is_iterator(obj):
        print(name, 'is an iterator')
    else:
        print(name, 'is not an iterator')
list is not an iterator
tuple is not an iterator
dict is not an iterator
range is not an iterator
generator is an iterator
list_iterator is an iterator
zip is an iterator
filter is an iterator
map is an iterator
if iter(x) is x:
    x = list(x)
-----------------------
def is_iterator(x):
    return iter(x) is x

for obj in [
    # not iterators
    [1, 2, 3],
    (1, 2, 3),
    {1: 2, 3: 4},
    range(3),
    # iterators
    (x for x in range(3)),
    iter([1, 2, 3]),
    zip([1, 2], [3, 4]),
    filter(lambda x: x % 2 == 0, [1, 2, 3]),
    map(lambda x: 2 * x, [1, 2, 3]),
]:
    name = type(obj).__name__
    if is_iterator(obj):
        print(name, 'is an iterator')
    else:
        print(name, 'is not an iterator')
list is not an iterator
tuple is not an iterator
dict is not an iterator
range is not an iterator
generator is an iterator
list_iterator is an iterator
zip is an iterator
filter is an iterator
map is an iterator
if iter(x) is x:
    x = list(x)
-----------------------
def is_iterator(x):
    return iter(x) is x

for obj in [
    # not iterators
    [1, 2, 3],
    (1, 2, 3),
    {1: 2, 3: 4},
    range(3),
    # iterators
    (x for x in range(3)),
    iter([1, 2, 3]),
    zip([1, 2], [3, 4]),
    filter(lambda x: x % 2 == 0, [1, 2, 3]),
    map(lambda x: 2 * x, [1, 2, 3]),
]:
    name = type(obj).__name__
    if is_iterator(obj):
        print(name, 'is an iterator')
    else:
        print(name, 'is not an iterator')
list is not an iterator
tuple is not an iterator
dict is not an iterator
range is not an iterator
generator is an iterator
list_iterator is an iterator
zip is an iterator
filter is an iterator
map is an iterator
if iter(x) is x:
    x = list(x)

Proper way to DI NSwag auto-generated client

copy iconCopydownload iconDownload
<ItemGroup>
  <OpenApiReference Include="OpenAPIs\swagger.json" CodeGenerator="NSwagCSharp" Namespace="xxx" ClassName="Client">
    <SourceUri>https://localhost:44353/swagger/v1/swagger.json</SourceUri>
    <Options>/UseBaseUrl:false /GenerateClientInterfaces:true</Options>
  </OpenApiReference>
</ItemGroup>
-----------------------
public partial class MyApiClient : IMyApiClient
{
    [ActivatorUtilitiesConstructor] // This ctor will be used by DI
    public MyApiClient(HttpClient httpClient, IOptions<MyApiClientOptions> clientOptions)
    : this(clientOptions.Value.Url, httpClient) // Call generated ctor
    {
    }
}

How to alias generic types for decorators

copy iconCopydownload iconDownload
import unittest
from typing import *

T = TypeVar("T", bound=unittest.TestCase)


def decorate(func: Callable[[T], None]) -> Callable[[T], None]:
    def decorated_function(self: T) -> None:
        return func(self)

    return decorated_function


decorator_variable: Callable[[Callable[[T], None]], Callable[[T], None]] = decorate

U = Callable[[T], None]
my_decorate: Callable[[U[T]], U[T]] = decorator_variable
-----------------------
class TD(Protocol):
    """Type of any callable `(T -> None) -> (T -> None)` for all `T`"""
    def __call__(self, __original: Callable[[T], None]) -> Callable[[T], None]:
        ...
my_decorate: TD = decorate
-----------------------
class TD(Protocol):
    """Type of any callable `(T -> None) -> (T -> None)` for all `T`"""
    def __call__(self, __original: Callable[[T], None]) -> Callable[[T], None]:
        ...
my_decorate: TD = decorate

Community Discussions

Trending Discussions on generator
  • How can I make an object with an interface like a random number generator, but that actually generates a specified sequence?
  • Why is `np.sum(range(N))` very slow?
  • How would you implement a lazy &quot;range factory&quot; for C++20 ranges that just calls a generator function?
  • Error [ERR_PACKAGE_PATH_NOT_EXPORTED]: Package subpath './lib/tokenize' is not defined by &quot;exports&quot; in the package.json of a module in node_modules
  • Can you compress angular image assets on build?
  • Convert a bytes iterable to an iterable of str, where each value is a line
  • Problem Updating to .Net 6 - Encrypting String
  • Ensure that an argument can be iterated twice
  • Proper way to DI NSwag auto-generated client
  • How to alias generic types for decorators
Trending Discussions on generator

QUESTION

How can I make an object with an interface like a random number generator, but that actually generates a specified sequence?

Asked 2022-Mar-31 at 13:47

I'd like to construct an object that works like a random number generator, but generates numbers in a specified sequence.

# a random number generator
rng = lambda : np.random.randint(2,20)//2

# a non-random number generator
def nrng():
    numbers = np.arange(1,10.5,0.5)
    for i in range(len(numbers)):
        yield numbers[i]

for j in range(10):
    print('random number', rng())
    print('non-random number', nrng())

The issue with the code above that I cannot call nrng in the last line because it is a generator. I know that the most straightforward way to rewrite the code above is to simply loop over the non-random numbers instead of defining the generator. I would prefer getting the example above to work because I am working with a large chunk of code that include a function that accepts a random number generator as an argument, and I would like to add the functionality to pass non-random number sequences without rewriting the entire code.

EDIT: I see some confusion in the comments. I am aware that python's random number generators generate pseudo-random numbers. This post is about replacing a pseudo-random-number generator by a number generator that generates numbers from a non-random, user-specified sequence (e.g., a generator that generates the number sequence 1,1,2,2,1,0,1 if I want it to).

ANSWER

Answered 2022-Mar-29 at 00:47

You can call next() with a generator or iterator as an argument to withdraw exactly one element from it. Saving the generator to a variable beforehand allows you to do this multiple times.

# make it a generator
def _rng():
    while True:
        yield np.random.randint(2,20)//2

# a non-random number generator
def _nrng():
    numbers = np.arange(1,10.5,0.5)
    for i in range(len(numbers)):
        yield numbers[i]

rng = _rng()
nrng = _nrng()
for j in range(10):
    print('random number', next(rng))
    print('non-random number', next(nrng))

Source https://stackoverflow.com/questions/71655179

Community Discussions, Code Snippets contain sources that include Stack Exchange Network

Vulnerabilities

No vulnerabilities reported

Install generator

You can download it from GitHub, Maven.
You can use generator like any standard Java library. Please include the the jar files in your classpath. You can also use any IDE and you can run and debug the generator component as you would do with any other Java program. Best practice is to use a build tool that supports dependency management such as Maven or Gradle. For Maven installation, please refer maven.apache.org. For Gradle installation, please refer gradle.org .

Support

For any new features, suggestions and bugs create an issue on GitHub. If you have any questions check and ask questions on community page Stack Overflow .

DOWNLOAD this Library from

Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from
over 430 million Knowledge Items
Find more libraries
Reuse Solution Kits and Libraries Curated by Popular Use Cases

Save this library and start creating your kit

Explore Related Topics

Share this Page

share link
Consider Popular Generator Utils Libraries
Compare Generator Utils Libraries with Highest Security
Compare Generator Utils Libraries with Permissive License
Compare Generator Utils Libraries with Highest Reuse
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from
over 430 million Knowledge Items
Find more libraries
Reuse Solution Kits and Libraries Curated by Popular Use Cases

Save this library and start creating your kit

  • © 2022 Open Weaver Inc.