tensorflow | A processor that evaluates a machine learning models | Machine Learning library
kandi X-RAY | tensorflow Summary
kandi X-RAY | tensorflow Summary
A processor that evaluates a machine learning models built with link:and stored in link:Buffers] binary format. The TensorFlow processor leverages internally link:Java API] library. To learn more about this application and the supported properties, please review the following details.
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
- Convert the input tensor to a list of images
- Produce a body from its body parts
- Draw a Lob candidate
- Calculates the median APF candidate
- Converts the given tensor to a list of labels
- Returns the index of the top k probabilities
- Find the index of the maximum probability
- Sort the topK list by probability
- Converts the given input into a map of tweets
- Vectorizes the given sentence
- Extracts a JSON object from a JSON map
- Converts an input to a tensor
- Converts RGB data to RGB float array
- Generate the output message builder
- Converts an input to a map
- Compares this object for equality
- Overridden to allow subclasses to override the labels
- Converts the input to a map
- Converts a tensor to a list of objects
- Evaluate the input
- Read a vocabulary from an input stream
- Generates the body of the pose
- Load object labels
- Disable SSL verification
- Builds a JSON string from the given tensor
- Compares this part with the specified object
tensorflow Key Features
tensorflow Examples and Code Snippets
Community Discussions
Trending Discussions on tensorflow
QUESTION
I am trying to use my own train step in with Keras by creating a class that inherits from Model. It seems that the training works correctly but the evaluate function always returns 0 on the loss even if I send to it the train data, which have a big loss value during the training. I can't share my code but was able to reproduce using the example form the Keras api in https://keras.io/guides/customizing_what_happens_in_fit/ I changed the Dense layer to have 2 units instead of one, and made its activation to sigmoid.
The code:
...ANSWER
Answered 2021-Jun-12 at 17:27As you manually use the loss and metrics function in the train_step
(not in the .compile
) for the training set, you should also do the same for the validation set or by defining the test_step
in the custom model in order to get the loss score and metrics score. Add the following function to your custom model.
QUESTION
Good day, everyone.
I want to have two separate TensorFlow models (f
and g
) and train both of them on the loss of f(g(x)). However, I want to use them separately, like g(x) or f(e), where e is an embedded vector but received not from g.
For example, the classical way to create the model with embedding looks like this:
...ANSWER
Answered 2021-Jun-15 at 10:53This can be achieved by weight sharing or shared layers. To share layers in different models in keras, you just need to pass the same instance of layer to both of the models.
Example Codes:
QUESTION
I have a problem about not accessing GPU in PyCharm and I use NVIDIA as GPU.
I installed tensorflow-gpu
in Python Interpreter of Setting part in Pycharm and then I run the code but I still cannot access it.
I wonder if I should use CUDA library? How can I fix it?
Here is my code snippet which is shown below.
...ANSWER
Answered 2021-Jun-14 at 11:14I fixed my issue.
Here are the steps of solving that issue.
1 ) Download CUDA from https://developer.nvidia.com/cuda-downloads
2 ) Download CUDNN from https://developer.nvidia.com/rdp/cudnn-download
3 ) Copy bin,include and lastly lib from CUDNN zip file and paste it C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA{version}
4 ) Then run the .py
code in PyCharm and it perceives GPU at last.
QUESTION
I would like to know whether there is a recommended way of measuring execution time in Tensorflow Federated. To be more specific, if one would like to extract the execution time for each client in a certain round, e.g., for each client involved in a FedAvg round, saving the time stamp before the local training starts and the time stamp just before sending back the updates, what is the best (or just correct) strategy to do this? Furthermore, since the clients' code run in parallel, are such a time stamps untruthful (especially considering the hypothesis that different clients may be using differently sized models for local training)?
To be very practical, using tf.timestamp()
at the beginning and at the end of @tf.function
client_update(model, dataset, server_message, client_optimizer)
-- this is probably a simplified signature -- and then subtracting such time stamps is appropriate?
I have the feeling that this is not the right way to do this given that clients run in parallel on the same machine.
Thanks to anyone can help me on that.
...ANSWER
Answered 2021-Jun-15 at 12:01There are multiple potential places to measure execution time, first might be defining very specifically what is the intended measurement.
Measuring the training time of each client as proposed is a great way to get a sense of the variability among clients. This could help identify whether rounds frequently have stragglers. Using
tf.timestamp()
at the beginning and end of theclient_update
function seems reasonable. The question correctly notes that this happens in parallel, summing all of these times would be akin to CPU time.Measuring the time it takes to complete all client training in a round would generally be the maximum of the values above. This might not be true when simulating FL in TFF, as TFF maybe decided to run some number of clients sequentially due to system resources constraints. In practice all of these clients would run in parallel.
Measuring the time it takes to complete a full round (the maximum time it takes to run a client, plus the time it takes for the server to update) could be done by moving the
tf.timestamp
calls to the outer training loop. This would be wrapping the call totrainer.next()
in the snippet on https://www.tensorflow.org/federated. This would be most similar to elapsed real time (wall clock time).
QUESTION
I'd like to run a simple neural network model which uses Keras on a Rasperry microcontroller. I get a problem when I use a layer. The code is defined like this:
...ANSWER
Answered 2021-May-25 at 01:08I had the same problem, man. I want to transplant tflite to the development board of CEVA. There is no problem in compiling. In the process of running, there is also an error in AddBuiltin(full_connect). At present, the only possible situation I guess is that some devices can not support tflite.
QUESTION
Machine Setting:
GPU: GeForce RTX 3060
Driver Version: 460.73.01
CUDA Driver Veresion: 11.2
Tensorflow: tensorflow-gpu 1.14.0
CUDA Runtime Version: 10.0
cudnn: 7.4.1
Note:
- CUDA Runtime and cudnn version fits the guide from Tensorflow official documentation.
- I've also tried for TensorFlow-gpu = 2.0, still the same problem.
Problem:
I am using Tensorflow for an objection detection task. My situation is that the program will stuck at
2021-06-05 12:16:54.099778: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10
for several minutes.
And then stuck at next loading process
2021-06-05 12:21:22.212818: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7
for even longer time. You may check log.txt for log details.
After waiting for around 30 mins, the program will start to running and WORK WELL.
However, whenever program invoke self.session.run(...)
, it will load the same two library related to cuda (libcublas and libcudnn) again, which is time-wasted and annoying.
I am confused that where the problem comes from and how to resolve it. Anyone could help?
===================================
Update
After @talonmies 's help, the problem was resolved by resetting the environment with correct version matching among GPU, CUDA, cudnn and tensorflow. Now it works smoothly.
...ANSWER
Answered 2021-Jun-15 at 13:04Generally, if there are any incompatibility between TF, CUDA and cuDNN version you can observed this behavior.
For GeForce RTX 3060
, support starts from CUDA 11.x
. Once you upgrade to TF2.4
or TF2.5
your issue will be resolved.
For the benefit of community providing tested built configuration
CUDA Support Matrix
QUESTION
I am programming in Python 3.8 with Tensorflow installed along with my natural language processing project. When I want to begin the training phase, I get this message right before I begin...
...ANSWER
Answered 2021-Mar-10 at 14:44I would suggest you to use conda
(Ananconda/Miniconda) to create a separate environment and install tensorflow-gpu
, cudnn
and cudatoolkit
. Miniconda has a much smaller footprint than Anaconda. I would suggest you to install Miniconda if you do not have conda
already.
QUESTION
Say I have an MLP that looks like:
...ANSWER
Answered 2021-Jun-15 at 02:43In your problem you are trying to use Sequential API to create the Model. There are Limitations to Sequential API, you can just create a layer by layer model. It can't handle multiple inputs/outputs. It can't be used for Branching also.
Below is the text from Keras official website: https://keras.io/guides/functional_api/
The functional API makes it easy to manipulate multiple inputs and outputs. This cannot be handled with the Sequential API.
Also this stack link will be useful for you: Keras' Sequential vs Functional API for Multi-Task Learning Neural Network
Now you can create a Model using Functional API or Model Sub Classing.
In case of functional API Your Model will be
Assuming Output_1 is classification with 17 classes Output_2 is calssification with 2 classes and Output_3 is regression
QUESTION
While I am in a conda environment, the 'conda list' and 'pip freeze' show different number of libraries. For example, 'tensorflow-gpu' is listed in 'pip freeze', but not in 'conda list'. If I want to use tensorflow-gpu in this environment, should I run pip install tensorflow-gpu to install it again, or not necessary?
...ANSWER
Answered 2021-Jun-15 at 00:54I think when you are using the conda environment. The conda list is going to show all the general packages that shared by the same conda environment. And the reason why 'tensorflow-gpu' is listed in 'pip freeze', but not in 'conda list', is because you used pip install to installed 'tensorflow-gpu'(could be you or the IDE). In this case, 'tensorflow-gpu' is only exists under this python project I believe. Actually, there is an official document about this topic.
Issues may arise when using pip and conda together. When combining conda and pip, it is best to use an isolated conda environment. Only after conda has been used to install as many packages as possible should pip be used to install any remaining software. If modifications are needed to the environment, it is best to create a new environment rather than running conda after pip. When appropriate, conda and pip requirements should be stored in text files.
Use pip only after conda Install as many requirements as possible with conda then use pip.
Pip should be run with --upgrade-strategy only-if-needed (the default).
Do not use pip with the --user argument, avoid all users installs.
And here is the link.
QUESTION
I am trying to make a next-word prediction model with LSTM + Mixture Density Network Based on this implementation(https://www.katnoria.com/mdn/).
Input: 300-dimensional word vectors*window size(5) and 21-dimensional array(c) representing topic distribution of the document, used to train hidden initial states.
Output: mixing coefficient*num_gaussians, variance*num_gaussians, mean*num_gaussians*300(vector size)
x.shape, y.shape, c.shape with an experimental 161 obserbations gives me such:
(TensorShape([161, 5, 300]), TensorShape([161, 300]), TensorShape([161, 21]))
...ANSWER
Answered 2021-Jun-14 at 19:07for MDN model , the likelihood for each sample has to be calculated with all the Gaussians pdf , to do that I think you have to reshape your matrices ( y_true and mu) and take advantage of the broadcasting operation by adding 1 as the last dimension . e.g:
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
Install tensorflow
You can use tensorflow like any standard Java library. Please include the the jar files in your classpath. You can also use any IDE and you can run and debug the tensorflow component as you would do with any other Java program. Best practice is to use a build tool that supports dependency management such as Maven or Gradle. For Maven installation, please refer maven.apache.org. For Gradle installation, please refer gradle.org .
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page