Reinforcement-Learning | 🤖 Implements of Reinforcement Learning algorithms | Reinforcement Learning library

 by   Ceruleanacg Python Version: Current License: MIT

kandi X-RAY | Reinforcement-Learning Summary

kandi X-RAY | Reinforcement-Learning Summary

Reinforcement-Learning is a Python library typically used in Artificial Intelligence, Reinforcement Learning applications. Reinforcement-Learning has no bugs, it has no vulnerabilities, it has a Permissive License and it has low support. However Reinforcement-Learning build file is not available. You can download it from GitHub.

This repo is implements of Reinforcement Learning Algorithms, implementing as learning, some of them are even another version of some tutorial. Any contributions are welcomed.
Support
    Quality
      Security
        License
          Reuse

            kandi-support Support

              Reinforcement-Learning has a low active ecosystem.
              It has 103 star(s) with 17 fork(s). There are 4 watchers for this library.
              OutlinedDot
              It had no major release in the last 6 months.
              Reinforcement-Learning has no issues reported. There are no pull requests.
              It has a neutral sentiment in the developer community.
              The latest version of Reinforcement-Learning is current.

            kandi-Quality Quality

              Reinforcement-Learning has 0 bugs and 18 code smells.

            kandi-Security Security

              Reinforcement-Learning has no vulnerabilities reported, and its dependent libraries have no vulnerabilities reported.
              Reinforcement-Learning code analysis shows 0 unresolved vulnerabilities.
              There are 4 security hotspots that need review.

            kandi-License License

              Reinforcement-Learning is licensed under the MIT License. This license is Permissive.
              Permissive licenses have the least restrictions, and you can use them in most projects.

            kandi-Reuse Reuse

              Reinforcement-Learning releases are not available. You will need to build from source code and install.
              Reinforcement-Learning has no build file. You will be need to create the build yourself to build the component from source.
              Installation instructions are not available. Examples and code snippets are available.
              Reinforcement-Learning saves you 790 person hours of effort in developing the same functionality from scratch.
              It has 1816 lines of code, 141 functions and 27 files.
              It has medium code complexity. Code complexity directly impacts maintainability of the code.

            Top functions reviewed by kandi - BETA

            kandi has reviewed Reinforcement-Learning and discovered the below as its top functions. This is intended to give you an instant insight into Reinforcement-Learning implemented functionality, and help decide if they suit your requirements.
            • Run the policy gradient
            • Train the model
            • Reset the observation
            • Save a transition
            • Train the environment
            • Update Q table
            • Checks if the given state exists in the q table
            • Return the next action in the given state
            • Run the optimizer
            • Update Q - target net
            • Sample from the buffer
            • Run an actor thread
            • Move the agent
            • Get next action
            • Sample a batch of data
            • Returns the leaf index for a leaf node
            • Update batch with q_value_diff
            • Update p_value with p_value
            • Add a transition to sum
            • Adds p_value to t_data
            • Calculate the next action
            • Plot training steps
            Get all kandi verified functions for this library.

            Reinforcement-Learning Key Features

            No Key Features are available at this moment for Reinforcement-Learning.

            Reinforcement-Learning Examples and Code Snippets

            Noisy linear cosine decay .
            pythondot img1Lines of Code : 92dot img1License : Non-SPDX (Apache License 2.0)
            copy iconCopy
            def noisy_linear_cosine_decay(learning_rate,
                                          global_step,
                                          decay_steps,
                                          initial_variance=1.0,
                                          variance_decay=0.55,
                              
            Linear cosine decay .
            pythondot img2Lines of Code : 82dot img2License : Non-SPDX (Apache License 2.0)
            copy iconCopy
            def linear_cosine_decay(learning_rate,
                                    global_step,
                                    decay_steps,
                                    num_periods=0.5,
                                    alpha=0.0,
                                    beta=0.001,
                                    n  
            Sigmoid activation function .
            pythondot img3Lines of Code : 47dot img3License : Non-SPDX (Apache License 2.0)
            copy iconCopy
            def swish(features, beta=1.0):
              # pylint: disable=g-doc-args
              """Computes the SiLU or Swish activation function: `x * sigmoid(beta * x)`.
            
              beta : Hyperparameter for Swish activation function. Default value 1.0.
            
              The SiLU activation function was  

            Community Discussions

            QUESTION

            Why is this tensorflow training taking so long?
            Asked 2021-May-13 at 12:42

            I'm learning DRL with the book Deep Reinforcement Learning in Action. In chapter 3, they present the simple game Gridworld (instructions here, in the rules section) with the corresponding code in PyTorch.

            I've experimented with the code and it takes less than 3 minutes to train the network with 89% of wins (won 89 of 100 games after training).

            As an exercise, I have migrated the code to tensorflow. All the code is here.

            The problem is that with my tensorflow port it takes near 2 hours to train the network with a win rate of 84%. Both versions are using the only CPU to train (I don't have GPU)

            Training loss figures seem correct and also the rate of a win (we have to take into consideration that the game is random and can have impossible states). The problem is the performance of the overall process.

            I'm doing something terribly wrong, but what?

            The main differences are in the training loop, in torch is this:

            ...

            ANSWER

            Answered 2021-May-13 at 12:42
            Why is TensorFlow slow

            TensorFlow has 2 execution modes: eager execution, and graph mode. TensorFlow default behavior, since version 2, is to default to eager execution. Eager execution is great as it enables you to write code close to how you would write standard python. It's easier to write, and it's easier to debug. Unfortunately, it's really not as fast as graph mode.

            So the idea is, once the function is prototyped in eager mode, to make TensorFlow execute it in graph mode. For that you can use tf.function. tf.function compiles a callable into a TensorFlow graph. Once the function is compiled into a graph, the performance gain is usually quite important. The recommended approach when developing in TensorFlow is the following:

            • Debug in eager mode, then decorate with @tf.function.
            • Don't rely on Python side effects like object mutation or list appends.
            • tf.function works best with TensorFlow ops; NumPy and Python calls are converted to constants.

            I would add: think about the critical parts of your program, and which ones should be converted first into graph mode. It's usually the parts where you call a model to get a result. It's where you will see the best improvements.

            You can find more information in the following guides:

            Applying tf.function to your code

            So, there are at least two things you can change in your code to make it run quite faster:

            1. The first one is to not use model.predict on a small amount of data. The function is made to work on a huge dataset or on a generator. (See this comment on Github). Instead, you should call the model directly, and for performance enhancement, you can wrap the call to the model in a tf.function.

            Model.predict is a top-level API designed for batch-predicting outside of any loops, with the fully-features of the Keras APIs.

            1. The second one is to make your training step a separate function, and to decorate that function with @tf.function.

            So, I would declare the following things before your training loop:

            Source https://stackoverflow.com/questions/67383458

            QUESTION

            module 'tensorflow' has no attribute 'tanh'
            Asked 2020-Sep-23 at 23:08

            I am trying to repeat what is shown in this tutorial: https://www.kaggle.com/alexisbcook/deep-reinforcement-learning

            When I run this code:

            ...

            ANSWER

            Answered 2020-Sep-23 at 23:08

            I fixed the problem by specifying TensorFlow version:

            Source https://stackoverflow.com/questions/64032388

            QUESTION

            Appending a list to another list in python
            Asked 2020-Aug-08 at 20:11

            I have a .txt file that contains data like this :

            ...

            ANSWER

            Answered 2020-Aug-08 at 13:29

            QUESTION

            Visualizing custom loss in double-head model
            Asked 2020-Apr-29 at 08:41

            Using an A2C agent from this article, how to get numerical values of value_loss, policy_loss and entropy_loss when weights are being updated?

            The model I'm using is double-headed, both heads share the same trunk. The policy head output shape is [number of actions, batch size] and value head has a shape of [1, batch_size]. Compiling this model returns a size incompatibility error, when these loss functions are given as metrics:

            ...

            ANSWER

            Answered 2020-Apr-29 at 08:41

            I found the answer to my problem. In Keras, the metrics built-in functionality provides an interface for measuring performance and losses of the model, be it a custom or standard one.

            When compiling a model as follows:

            Source https://stackoverflow.com/questions/61459218

            QUESTION

            How are n dimensional vectors state vectors represented in Q Learning?
            Asked 2020-Apr-16 at 07:47

            Using this code:

            ...

            ANSWER

            Answered 2020-Apr-16 at 07:47

            Yes, states can be represented by anything you want, including vectors of arbitrary length. Note, however, that if you are using a tabular version of Q-learning (or SARSA as in this case), you must have a discrete set of states. Therefore, you need a way to map the representation of your state (for example, a vector of potentially continuous values) to a set of discrete states.

            Expanding on the example you have given, imagine that you have three states represented by vectors:

            Source https://stackoverflow.com/questions/61215966

            QUESTION

            Tensorflow var does not exists error and resource not found error
            Asked 2020-Apr-09 at 12:47

            I am trying to run the code given by sentdex mentioned in https://pythonprogramming.net/reinforcement-learning-self-driving-autonomous-cars-carla-python/.

            Specifications:-

            Windows 10, Carla 0.9.5, Python 3.7.5, Tensorflow 1.14.0.

            I am not using any GPU version of the tensorflow. I have made few changes in the imports of the code. When I am running this code I am getting Resource not found error. Also note that an instance of carla is already running in background at port 2000 as mentioned in the code. Till now I have played with the imports by changing the locations of them along with installing different versions of tensorflow.

            Changes in import:-

            ...

            ANSWER

            Answered 2020-Mar-01 at 15:21

            After many days of research I found out that the resources were not getting initialized and hence it was saying var does not exist. So, I found few lines of codes that I pasted after graph.as_default() and before saving the model. These are the lines of codes:-

            Source https://stackoverflow.com/questions/60309106

            QUESTION

            reinforcement learning - number of actions
            Asked 2020-Mar-14 at 12:18

            ANSWER

            Answered 2020-Mar-14 at 12:18

            Yes, you are right. Usually you define a dictionary containing a map between integers and every action your agent can make. You can see that in the function n_actions is used exactly to sample a random action index when you don't select the optimal one.

            Source https://stackoverflow.com/questions/60682153

            QUESTION

            What does the notation self(x) do?
            Asked 2020-Jan-09 at 16:45

            I'm learning about Distributional RL from 'Deep Reinforcement Learning Hands On' code. And there is a method in model class:

            ...

            ANSWER

            Answered 2020-Jan-09 at 16:45

            It will call the __call__ method on the instance. See this demo:

            Source https://stackoverflow.com/questions/59668333

            QUESTION

            How do I calculate MaxQ in Q-learning?
            Asked 2019-Oct-20 at 14:37

            I'making a implementation of Q-learning, specifically the Bellman equation.

            I'm using the version from a website that guides he through the problem, but I have question: For maxQ, do I calculate the max reward using all Q-table values of the new state (s') - in my case 4 possible action (a'), each with their respective value- or the sum of the Q-table values of all the positions when taking the action (a')?

            In other words, do I use the highest Q-value of all the possible actions I can take, or the summed Q-values of all the "neighbouring" squares?

            ...

            ANSWER

            Answered 2019-Oct-20 at 14:37

            You always use max Q-value for all the possible actions you can take.

            The idea is to pick the action with biggest (best) Q-Value of next state in order to stay in optimal policy Qpi* .

            Source https://stackoverflow.com/questions/58473521

            QUESTION

            Keras Q-learning model performance doesn't improve when playing CartPole
            Asked 2019-Jul-03 at 03:20

            I'm trying to train a deep Q-learning Keras model to play CartPole-v1. However, it doesn't seem to get any better. I don't believe it's a bug but rather my lack of knowledge on how to use Keras and OpenAI Gym properly. I am following this tutorial (https://adventuresinmachinelearning.com/reinforcement-learning-tutorial-python-keras/), which shows how to train a bot to play NChain-v0 (which I was able to follow), but now I am trying to apply what I learned to a more complex environment: CartPole-v1. Here is the code below:

            ...

            ANSWER

            Answered 2019-Jun-29 at 11:20

            Reinforcement learning is very noisy and your batch size is 1 which makes it even noisier. You can try to use a memory buffer of past episodes/updates which you update. You could use something like deque() from collections for this buffer. Then you randomly sample from this memory buffer according to a given batch-size. I found this repo to be very helpful (it includes a replay/memory buffer and a RL agent as you need it) https://github.com/udacity/deep-reinforcement-learning/tree/master/dqn Nevertheless, RL takes a long time to converge, unlike conventional deep learning where the loss decreases very fast in the beginning, in RL the reward will not increase for a long time and then suddenly start increasing.

            Source https://stackoverflow.com/questions/56816743

            Community Discussions, Code Snippets contain sources that include Stack Exchange Network

            Vulnerabilities

            No vulnerabilities reported

            Install Reinforcement-Learning

            You can download it from GitHub.
            You can use Reinforcement-Learning like any standard Python library. You will need to make sure that you have a development environment consisting of a Python distribution including header files, a compiler, pip, and git installed. Make sure that your pip, setuptools, and wheel are up to date. When using pip it is generally recommended to install packages in a virtual environment to avoid changes to the system.

            Support

            For any new features, suggestions and bugs create an issue on GitHub. If you have any questions check and ask questions on community page Stack Overflow .
            Find more information at:

            Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items

            Find more libraries
            CLONE
          • HTTPS

            https://github.com/Ceruleanacg/Reinforcement-Learning.git

          • CLI

            gh repo clone Ceruleanacg/Reinforcement-Learning

          • sshUrl

            git@github.com:Ceruleanacg/Reinforcement-Learning.git

          • Stay Updated

            Subscribe to our newsletter for trending solutions and developer bootcamps

            Agree to Sign up and Terms & Conditions

            Share this Page

            share link

            Consider Popular Reinforcement Learning Libraries

            Try Top Libraries by Ceruleanacg

            Personae

            by CeruleanacgPython

            Learning-Notes

            by CeruleanacgJupyter Notebook

            Quantitative-Trading

            by CeruleanacgJupyter Notebook

            Crack-Interview

            by CeruleanacgC++

            Miyo

            by CeruleanacgPython