MoCo | Unofficial pytorch implementation of MoCo : Momentum | Machine Learning library
kandi X-RAY | MoCo Summary
kandi X-RAY | MoCo Summary
Unofficial pytorch implementation of Momentum Contrast for Unsupervised Visual Representation Learning (Paper).
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
- Default loader
- Load an image file
- Load image from file
- Create a dataset
- Return True if filename ends with given extensions
- Plot the accuracy
- Data loader
- Calculates accuracy
- Plot the accuracy plot
- Plots an encoder loss
- Plots the loss plot
- Move the momentum of the momentum
- Calculate learning rate
- Check if filename is an image file
MoCo Key Features
MoCo Examples and Code Snippets
# your training for-loop
for i, data in enumerate(dataloader):
optimizer.zero_grad()
embeddings = your_model(data)
augmented = your_model(your_augmentation(data))
labels = torch.arange(embeddings.size(0))
embeddings = torch.cat([embeddings, aug
Community Discussions
Trending Discussions on MoCo
QUESTION
entrezid_downgene=structure(list(SYMBOL = c("ARHGEF16", "ILDR1", "TMPRSS4", "MAP7", "SERINC2", "C9orf152", "TSPAN1", "RHEX", "TMC4", "CRB3", "UGT8", "CD24", "MAPK13", "AGR2", "GJB1", "ERBB3", "CNDP2", "LOC105378644", "GCNT3", "CEACAM1", "GPR160", "PRSS8", "HOOK1", "ABHD17C", "MOCOS", "CWH43", "EHF", "ACSL5", "SLC44A4", "RAP1GAP", "MUC13", "PPM1H", "ATP2C2", "RAB25", "H2BC5", "H4C12", "TJP3", "RXFP1", "GSTO2", "OVOL2", "TMEM125", "LIMS1", "DLX5", "ST6GALNAC1", "HNF1B", "STX19", "F2RL1", "MT1G", "PLPP2", "TMEM238", "SLC30A2", "GABRP", "EPCAM", "CLDN10", "HOXB5", "PRAME", "MAL2", "PLA2G10", "TSPAN12", "FAM174B", "TMC5", "ASRGL1", "SCNN1A", "FOXL2", "ALDH3B2", "ELF3", "SLC7A1", "MT1F", "CLDN3", "SPINT2", "SFN", "VWC2", "C9orf116", "SLC39A6", "TCN1", "IL20RA", "ACSM3", "FOXL2NB", "HGD", "PAX8", "IDO1", "C4BPA", "RHPN2", "HMGCR", "UGT2B11", "PIGR", "MUC20", "SLC3A1", "PLLP", "PSAT1", "SCGB2A1", "WNT5A", "DEFB1", "FGL1", "SLC2A8", "HOXB8", "CYP2J2", "WWC1", "MUC1", "PRKX", "RASEF", "BAIAP2L2", "PAPSS1", "MME", "HOMER2", "STRA6", "ARG2", "MOGAT1", "CDS1", "SCGB2A2", "MPZL2", "PHYHIPL", "INAVA", "IDO2", "GALNT4", "TMEM101", "HSD17B2", "AOC1", "CDCA7", "CAPS", "TFCP2L1", "PAEP", "PLAC9P1", "GAL", "RORB", "CCNO", "XDH", "C15orf48", "SLC1A1", "GPT2", "VNN1", "NWD1", "HABP2", "UGT2B7", "CYP26A1", "MSX1", "ENPP3", "KIR2DL3", "ADAMTS9", "KIR2DL4", "BRINP1", "PROM1", "APCDD1", "AGR3", "EYA2", "SLC2A1", "GNLY", "COL7A1", "FOXJ1", "MS4A8", "C20orf85", "RSPH1", "SCGB1D2", "SPP1", "RASD1", "CST1", "SCGB1D4", "LEFTY1", "LAMC3", "TEKT1", "LCN2", "VTCN1", "IRX3", "ROPN1L", "FAM183A", "NDP", "TUBB3", "DIO2", "IL2RB", "ADAMTS8", "SERPINA5", "NKG7", "ABCC8", "STC1", "LRRC26"),
ENTREZID = c("27237", "286676", "56649", "9053", "347735", "401546", "10103", "440712", "147798", "92359", "7368", "100133941", "5603", "10551", "2705", "2065", "55748", "105378644", "9245", "634", "26996", "5652", "51361", "58489", "55034", "80157", "26298", "51703", "80736", "5909", "56667", "57460", "9914", "57111", "3017", "8362", "27134", "59350", "119391", "58495", "128218", "3987", "1749", "55808", "6928", "415117", "2150", "4495", "8612", "388564", "7780", "2568", "4072", "9071", "3215", "23532", "114569", "8399", "23554", "400451", "79838", "80150", "6337", "668", "222", "1999", "6541", "4494", "1365", "10653", "2810", "375567", "138162", "25800", "6947", "53832", "6296", "401089", "3081", "7849", "3620", "722", "85415", "3156", "10720", "5284", "200958", "6519", "51090", "29968", "4246", "7474", "1672", "2267", "29988", "3218", "1573", "23286", "4582", "5613", "158158", "80115", "9061", "4311", "9455", "64220", "384", "116255", "1040", "4250", "10205", "84457", "55765", "169355", "8693", "84336", "3294", "26", "83879", "828", "29842", "5047", "389033", "51083", "6096", "10309", "7498", "84419", "6505", "84706", "8876", "284434", "3026", "7364", "1592", "4487", "5169", "3804", "56999", "3805", "1620", "8842", "147495", "155465", "2139", "6513", "10578", "1294", "2302", "83661", "128602", "89765", "10647", "6696", "51655", "1469", "404552", "10637", "10319", "83659", "3934", "79679", "79191", "83853", "440585", "4693", "10381", "1734", "3560", "11095", "5104", "4818", "6833", "6781", "389816")),
row.names = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 123L, 124L, 125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 133L, 134L, 135L, 136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L, 147L, 148L, 149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L, 157L, 158L, 159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L, 167L, 168L, 169L, 170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L), class = "data.frame")
down_ekk <- enrichKEGG(gene= c(entrezid_downgene$ENTREZID),
organism = 'hsa',
pvalueCutoff = 0.05,
minGSSize = 50,
maxGSSize = 500,
)
dot <- dotplot(down_ekk,font.size=6,title='down_kegg')
dot
...ANSWER
Answered 2021-Jul-16 at 09:26This is normal you can't plot the dotplot because you have no significant ontologies.
You can check with down_ekk
:
QUESTION
This may be a super naive question, but I have a function that I'm trying to loop over with each item in a list being an input. The function is get_t1_file()
ANSWER
Answered 2021-Jun-24 at 16:37You have to use the returned value of the function:
QUESTION
Versions are:
...ANSWER
Answered 2020-Sep-11 at 21:30I think you use incorrect package name in your code - selenium-selenium
. This package doesn't available on npmjs.org.
Try change this lines in our code:
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install MoCo
You can use MoCo like any standard Python library. You will need to make sure that you have a development environment consisting of a Python distribution including header files, a compiler, pip, and git installed. Make sure that your pip, setuptools, and wheel are up to date. When using pip it is generally recommended to install packages in a virtual environment to avoid changes to the system.
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page