C-codes | Various programs in C/C for reference | Web Site library
kandi X-RAY | C-codes Summary
kandi X-RAY | C-codes Summary
Various programs in C/C++ for reference.
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of C-codes
C-codes Key Features
C-codes Examples and Code Snippets
Community Discussions
Trending Discussions on C-codes
QUESTION
What is the best way to apply a row-wise function and create multiple new columns?
I have two dataframes and a working code, but it's most likely not optimal
df1 (dataframe has thousands of rows and xx number of columns)
sic data1 data2 data3 data4 data5 5 0.90783598 0.84722083 0.47149924 0.98724123 0.50654476 6 0.53442684 0.59730371 0.92486887 0.61531646 0.62784041 3 0.56806423 0.09619383 0.33846097 0.71878313 0.96316724 8 0.86933042 0.64965755 0.94549745 0.08866519 0.92156389 12 0.651328 0.37193774 0.9679044 0.36898991 0.15161838 6 0.24555531 0.50195983 0.79114578 0.9290596 0.10672607df2 (column header maps to the sic-code in df1. There are in total 12 sic-codes and the dataframe is thousands of rows long)
1 2 3 4 5 6 7 8 9 10 11 12 c_bar 0.4955329 0.92970292 0.68049726 0.91325006 0.55578465 0.78056519 0.53954711 0.90335326 0.93986402 0.0204794 0.51575764 0.61144255 a1_bar 0.75781444 0.81052669 0.99910449 0.62181902 0.11797144 0.40031316 0.08561665 0.35296894 0.14445697 0.93799762 0.80641802 0.31379671 a2_bar 0.41432552 0.36313911 0.13091618 0.39251953 0.66249636 0.31221897 0.15988528 0.1620938 0.55143589 0.66571044 0.68198944 0.23806947 a3_bar 0.38918855 0.83689178 0.15838139 0.39943204 0.48615188 0.06299899 0.86343819 0.47975619 0.05300611 0.15080875 0.73088725 0.3500239 a4_bar 0.47201384 0.90874121 0.50417142 0.70047698 0.24820601 0.34302454 0.4650635 0.0992668 0.55142391 0.82947194 0.28251699 0.53170308I achieved the result I need with the following code:
...ANSWER
Answered 2022-Apr-14 at 08:05Try transposing df2 and applying transformations to it. Transposing a data frame means converting the rows into columns of your data frame.
df2_tr = df2.T.map(lambda col:mapFunc(col),axis=0)
then, you can use concatenate the transformed columns of df2 with the columns of df1, using df1 = pd.concat([df1,df2],axis=1)
.
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install C-codes
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page