TensorFlowAndroidDemo | TensorFlow android demo 车道线 车辆 人脸 动作 骨架 识别 检测 抽烟 打电话 闭眼 睁眼 | Machine Learning library
kandi X-RAY | TensorFlowAndroidDemo Summary
kandi X-RAY | TensorFlowAndroidDemo Summary
Denis Tome, Chris Russell, Lourdes Agapito提出的Convolutional 3D Pose Estimation from a Single Image论文. 目前本Demo模型能识别出 抽烟 打电话 闭眼 睁眼. TensorFlowImageClassifier2 为车道检测之后不规则绘制(因时间仓促 还没有进行绘图优化) 识别道路的测试方法请自行百度寻找图片或者视频都可以. TensorFlowImageClassifier3 是用来识别人体骨架的 这个模型是有特定输入和特定输出的 需要经过3层转换 才能使用 接下来准备上线道路障碍物识别... 最新版骨架识别目前支持区分各个身体部位具体情况请看注释. Camera2BasicFragment4 这是一个用检测来识别车道和前车 里面增加了点逻辑来判断是否是车道偏离或者前车过近 具体做法是 如果检测出线则判断斜率k = (y2-y1)/(x2-x1)然后设定一个固定斜率来判断是否是车道偏离 如果是检测出前面的车辆中心点在横屏8分之2到8分之6的范围内则判断中心点居上距离大于一定范围则算前车过近 或者如果车的高度大于一定级别则算前车过近. 另外: 有人私下问我本项目在他们的手机上跑起来卡顿严重 这是算力的问题,目前tensorFlow在移动设备上貌似不支持GPU,而CPU的浮点运算速度比较慢导致的 推荐使用华为P10 或者 骁龙845 635之类的U来跑跑看 一般P10的话 1能一秒4帧 2能1秒8帧 3能一秒1帧 4能一秒6帧左右 当然以上数据仅供产考. 计算 Vx = Dx / k Vy = Dy / k. 连线的过程中每个线均分10个点 分出2个数组 分别是X数组 Y数组 每个数组都是10个数字 均分公式如下. 计算每个连线的分数: CocoPairs 与 CocoPairsNetwork 一一对应 每一组对应的CocoPairs连线方式可以在CocoPairsNetwork里取出2层 (如:1和2之间连线 可以在12层和13层里分别取出10个均等值) 并把均等值存到2个新的长度为10的组里 Px[10] 和 Py[10].
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
- Processes the input image
- Change image to RGB
- Internal function
- Callback method
- Invoked when the camera is created
- Rounds to round
- To blur a bitmap
- Creates a new camera preview session
- Convert a bitmap to a round rectangle
- Open import statas bar
- Sets a click method on a button
- Convert a bitmap to base64 string
- Add a bitmap to a bitmap
- Check if a bitmap is simple color image
- Encode html
- Convert a bitmap to a new bitmap
- Get all xml
- Uses a bitmap to recognize the image
- Returns a list of recognize images based on the provided bitmap
- Classify image
- Get all contact info
TensorFlowAndroidDemo Key Features
TensorFlowAndroidDemo Examples and Code Snippets
Community Discussions
Trending Discussions on TensorFlowAndroidDemo
QUESTION
I am working with this demo of tensorflow : https://github.com/miyosuda/TensorFlowAndroidDemo (Android Studio project without Bazel)
Can I use tensorflow with my own images ? How ? Is there any example to set a new dataset?
...ANSWER
Answered 2017-Apr-21 at 13:351) You have to setup your own tensorflow environment first, using virtualenv (or docker or anaconda) first ( refer https://www.tensorflow.org/install/ )
2) And then, clone tensorflow source repo : https://github.com/tensorflow/tensorflow
3) After that, you should build several files for training/testing your own images and creating/optimizing graph files such as retrain, optimize_for_inference, quantization, etc.
4) Put your own images in appropriate classified names in the training folder
5) start training
Refer this page for how to (re)train images and put them onto android demo:
https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/index.html#0 (This tutorial assumes you're using docker, but virtualenv and/or anaconda is almost same in how to do it)
and this Peter Warden's blog: https://petewarden.com/2016/09/27/tensorflow-for-mobile-poets/ for mobile implementation (it's based on ios example but can be applied to android also)
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install TensorFlowAndroidDemo
You can use TensorFlowAndroidDemo like any standard Java library. Please include the the jar files in your classpath. You can also use any IDE and you can run and debug the TensorFlowAndroidDemo component as you would do with any other Java program. Best practice is to use a build tool that supports dependency management such as Maven or Gradle. For Maven installation, please refer maven.apache.org. For Gradle installation, please refer gradle.org .
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page