WA | News - # site is published at https : //aranavtiwari
kandi X-RAY | WA Summary
kandi X-RAY | WA Summary
#site is published at
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of WA
WA Key Features
WA Examples and Code Snippets
Community Discussions
Trending Discussions on WA
QUESTION
I have tried to write the vba code for inserting and changing the image inside the user form in excel but I was not able to insert as well as to change the image based on the combo box, To insert the value in combo box I have added the row source as shown in the image ( List of fruits) and to insert the images I have kept in particular folder which you can find in my program.
pl. can anybody correct me in this program or help me to get this solved so that I can get the image in the image box of the user form.
I have tried with below program
...ANSWER
Answered 2021-Jun-15 at 15:35Try these two
QUESTION
In my app, I have a stored procedure that copies rows based on a time interval.
...ANSWER
Answered 2021-Jun-12 at 13:13You need to use the copied_wo
column to join my_table
with itself so you can get related_doc_id
from the my_relations
row linked to the original row in my_table
.
QUESTION
I am trying to add a column with the weighted average of 4 columns with 4 columns of weights
...ANSWER
Answered 2021-Jun-11 at 19:55A straight-forward and simple way to do is as follows:
(Since your columns name for the weights are not consistently named, e.g. some with 's' and some without, some with capital 'W' and some with lower case 'w', it is not convenient to group columns e.g. by .filter()
)
QUESTION
I have two dataframes, df1, and df2. I am joining on two different column names. For some reason when I perform this join, the result creates exponential duplicated rows. How would I avoid this. I am using outer join.
Data
df1
...ANSWER
Answered 2021-Jun-10 at 17:15Create a temp
column t
with groupby
/cumcount
and just use that column for the merge.
QUESTION
Im really stuck here. Ive learnt how to use Selenium to scrape a price and in the above example it is for a fuel / gas / petrol website. I can get the price to print in my Terminal:
print("Best Petrol Price in Perth today is:", elem.text)
Though I am stuck in how to reference that price into the body of an email - Im using smtplib and Gmail. Credentials redacted and emails replaced with dummyholders.
...ANSWER
Answered 2021-Jun-10 at 01:13I you want to include the price into the email, may want to try using f string :
QUESTION
So, I have been working with MAPI API's. In that Whenever I call the MAPIUninitialize api, my application crashes. on further debugging, I found that, IMAPISession::OpenMsgStore is the reason behind the crash, whenever the OpenMsgStore function is executed during the program runtime, my app crashes exactly after the MAPIUninitialize is triggered. which is similar to the discussion in this thread mentioned below, in which soln is not available.
https://peach.ease.lsoft.com/scripts/wa-PEACH.exe?A2=MAPI-L;e6f3847a.0801&S=
I have checked my program for memory leaks, and I'm sure there is none and also, if i comment that particular api, my program doesnt crash, i dont understand the reason for the crash. I have tried all possible alternatives. Can anyone help on this ?
...ANSWER
Answered 2021-May-24 at 16:00It mostly likely means you still have live MAPI objects. It is also possible that the sequence of MAPIInitialize / MAPIUninitialize is too quick and the common Office run-time is still (asynchronously) initializing when you attempt to shut it down.
Also, not all stores are created equal - IMAP4 is probably the worst.
QUESTION
I'm having a problem executing a piece of js after a function with recursion. I tried so many ways, I can't figure how this can be done. I imagine it must be pretty simple.
This is what i what to execute after the recursion:
...ANSWER
Answered 2021-Jun-07 at 17:40I believe adding condition to check whether the cycle is over and calling the callback after that should do:
QUESTION
I successfully compiled boost 1.70
for Android armeabiv7a
with NDK r21b
.
I used user-config.jam:
...ANSWER
Answered 2021-Jun-07 at 07:22By looking where a "ld.exe" was present in C:\Android\android_sdk\ndk-bundle\toolchains\llvm
folder, I found some under C:\Android\r21a_Qt5_14\android_sdk\ndk-bundle\toolchains\llvm\prebuilt\windows-x86_64\\bin
so I concluded that target platform was probably missing.
I added:
QUESTION
I have a data frame in which I have an id variable fruit
in the example. For some of the other variables, there is only one corresponding value to each id variable taste
, ranking
while for others, there are multiple color
,origin
.
I would like to collapse the data frame so that each id variable has one row. For the variables that have multiple values, I could ideally store them as a list.
However, I can't figure out a way to do this. Here is what I tried using summarise
and unique
for the variables with multiple values. However, I just got back the original data:
ANSWER
Answered 2021-Jun-05 at 19:34We can use summarise
with across
, store the unique
elements in a list
after doing a grouping by the columns of interest
QUESTION
I am trying to send out an email with node mailer, and it is sending the email, but I am trying to use an image in there, a base64 image. I've converted the image to base64, and done this:
...ANSWER
Answered 2021-Jun-02 at 16:51var base64 = `/9j/4AAQSkZJRgABAQEAYABgAAD//gA7Q1JFQVRPUjogZ2QtanBlZyB2MS4wICh1c2luZyBJSkcgSlBFRyB2ODApLCBxdWFsaXR5ID0gODIK/9sAQwAGBAQFBAQGBQUFBgYGBwkOCQkICAkSDQ0KDhUSFhYVEhQUFxohHBcYHxkUFB0nHR8iIyUlJRYcKSwoJCshJCUk/9sAQwEGBgYJCAkRCQkRJBgUGCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQk/8AAEQgAtwETAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8AdaWUxx+8f861boSW2kK4Yq/mY3Z5qzbQKBwKqeJD5Olxn/prRWptQbRtRknUSZy19mRwWOWJJJPemxoBjP1pJ7hVCu/ABxxzzTZr6G3kKSZ3Dk1z4aSVPU7MRH39BurSXM5iZNkWx8qDzvx6+lYWvI9/qsUxBkcoSGRuM44/CtnVLlLnS2mtCrNHySeoHpXLXDvahpYn3O3Own7o9BXj4mm41HyHPKLRBOxCpJJlpz94NyR9Kr28MkqvIkYUZz7itFBCYle6VkkHIBPP/wCqqthchrgo0oKs2MJ/DWHPpp0MZb3L+naoLWeK/wDMNu64IG0jcR9e9dLqd9rcjQatNOAtw3JikAbA9QKx4rOCW6W3uroArEX2su4D0/OtqDTpJdQsrd4HjU4VlKHYM+/0rKcr20KijptL1XU728s4xMpAYE5AwQe/1p2reJ7G68Ri2vI9iRv8wLYBGMZNc3r2u2Gh37aOlvLNJCMKyHZ5fod3U1R1OLQtd0S+uBPcx6pBCZFl3EjjsalZbPl5+V8r6j543tfU0fF2rJYDf4f1GZ4WYhkU5VR6Vwdz4vuJJiZHODxtYnml0K7t2tE+338gyB8mPve1SeJpNMm0DGmWp+1xMDuAzkGvawdKpQVkRu22wsvFQeRYponUMe/AFX7SeO7kQ2sYkmDHahXK/lXI6XbSyJb/AGhW3kfMGrpdOtxb3kgjJUqgbg9ORW1am6r5mUtCaWPU0uriOa3ZpZB95eMY6celUHuLq9uF+z2+9kJLn+9jvXqHhfS4L2eymljEjsSCW59a8/1aeKz1jVbJ4x887ojdAnPTiuWWDnCPMVz3djOvQbiEu1wgCAFo1Y5OT0+tSxW+mWyNI7iRkX5k3lWOR0we4qeW1Eej2ciqd01yybxHw3pzSz2BvnazPlQzW7lWlk7/AF9axdOUVe2jDRvQqGZLW4hEMMtsy/OA7Esy96gvtXOo263DqFt0O0KoALEdyPf1rSt9StrG2+yX1t9th+Zo3OVIbGCVNUtui6o5toRJZOWURBz8r+rE9vpUqCa0A6PwvqGjGKODVbSNNkbvHLGc7mIyuR7GrfijV7XXvCsAFnGNRicI00S7MxAHgj0zXJ291pthe3cbuwMMbIpB3IzdiKpf2ldXrMyyhgyhfLj7j2zQqUlZlxbOl8I+Jk0iObSpmYRXq7WBkK+U/VXH0NMfUvPhnhmnknilZncnGXZT1BrHk0W6ufnn2LkDbg8r+NLb6OY54YXMjIDuZscfQHtVxTvpuU6Ul0HHQZxEmqWMsHkIMHy3/eLk4G4ev0rrdG8T6poVnFLYXtxLD5/z74/ljHc5689MVi2unm2aRrRVIY9JeQPwq2I706dLYSNEYXkErEDDEjoPpXVLBVZPmSMedJ2Z7BYay3iiMQ3ulLd2DncrjhtuPvY61g/El7fS/C89x9iubWaLP2R49zh8dj6ZHrXlnh74gTwaokFteXEbxRsspB+VFB5wM16R4j8YzWngOe+i1uG7up1+zG3ZRlC54ZR9OorjipRqJNamvOrHjH/CfanI4jCSZJwMmi48ZarbxmSRWCjr81crp8NydbiV3ynm9N1df4h09U0yVgACMV7sVKSb0Oa7va5mt4/vTxtY/wDAv/rVBJ47vW/hb/vqsd7fHIqNoMJnBzUczvsW723Nr/hK9RbkZwfeioo7X5F4HQUVpyy7GfMfUlqquoZWDD1FZvjOPboyHv5wrV0y2it7aNIUCRgcAVm+N1J0IdciYV01vgZNB2mjz+6SSZYoYY2kkklVQqjJzmuy1HTfCPhswHxHBdXl3Om4xwOQE9uoqLwpoN7Gf7YS+iD7tkULoGAHdvY10h0zwvqd1HPq3lSXVvwrPNtAz6jNYYXCw5OeeqOjE4iUpcsDAtdc+G4UxxeG73aeuZTz/wCPVOH+GNy+6Tw3eo2fvLKc/wDoVdW3hjwPqEiM0cDSYwoSbH6A1ds/BPg+KUTfZo1MZzlpjj+db+yofynO/abXPL/FngjQp9Lk13wot1IkJ/0m3nO5o1/vD2/OvObWzEd8XWDCFskDqB619aWcfhO3mZY5rJWdCjKZRhgexGea+c/iXoKeDPF8tpbXSS20w862CcnYcnB+nT8q8HM8NGL5qGzKtJL3ius+n3dlfSxCWKdCoQOwySOv4VJb+NVayt7YiW5uEckO/wAowB+tcNqtx513G8gSEkfNg4PXrV6zErSRiKFNvVGaQB5OeMA9a81YS9nuLnb+Ejn1GW8up7qbezyueXOSPam2moLBJKjKT5qbBipdYtpIF83y9ivyNvIH41iRz/6SgJ719jQaeHjEynG07k18wEoCYAUHpVyS387RhslMbOoyR2IrNv5MOMAZNaUdxu05N2AMdqzaTbuaIbo5BWJA7SFOCzDrXR2zRw3c0s7+XEIwC2M856D34rkLbVY7P5yny549TXTW8J8UaA0ttK0A+0GNmPqFB6fiB+dc8KtNQZcE5ysjuNC8ZW2mGyCorIGOHc/zx061iarolv4gl1DU7K6kSeNmne3YBgw6naw9PTFZOi+G2tZ4xd35lCt8qgcV1/hnTRpev3FrbqjQyKr7VU7txPPHcYqJVrtRZ2fV/dvYxTEbjwToohnKn7VJk7evNZcEB083/wBtSe5ZiPJIUjy+f1r0G58XW9q7Wn9iWYS3kYKvk8A5wSKibxvbcltGteev7o11zw1Ga1kjzFUknszzS7sDE6M107QxAuYSjHb+NX9d0yzTR9JuIyqm5hdjhe4PBruG8c2pBH9j2nPB/c1BceM7S5VEk0e0cRjCgw/d+lZLAUV9pFe3l2Zy/gC3gY3sN0I5EW2fy/MAOT7VUjjWOV1iVFAXOAMVsaxq8F6Izb2EVs6NwYo9uR6GstoXhvJAwG10DIfaubFwjClyR1O/BS5qnMOaYhQuPxpyTYixjrULLk8c0qsAhDCvPgmerJqxqaSqyljzxWibckEY4xWZojjbIQOhFXpNXQXAhSOVuCGIjJGfrX02DcY0I8x8/ik3Wdjxa/0W7N/csoUAyt39612jEUsIlPChc/lVfUdM1Rb64f7JeBGlYgiNsYzVvVMQv+9DIQq53AjtXNCnF3YpXWhm6fpKxa7DOtyjgy52gV2viZB/ZUo91/nXGabdJ/blpGpBBccg10njHVlhi+yjG5ufyrWCjGEiHL3kcs8QA68/Wq7KSMDGKZJqAeLIBLbse2KntreSWPc5VAemetcXPFbs35r7Gosfyj6Ciqpu5VO0YwOKKf12HYw9mz6qtXWOCMucfKD0rP8AEkX2/TDHbkO4feO3asWx8WbLeLFq7HaDkt7U9vFMzEn7OcE/dzXJUWYVIOHKtetyoxine5l6L4lOn29zZyHbPFP0/wBkmvQ/D3hnQ9Uh+1XWnQTSOeZGUMTXhfi7Tbu71aTWLRpYBjLQqMhuKyNL+JXjfTohFa3N3FGhxtMWc/mK6oupSpqFRGsUr3R9a2fhbw9bOHi02GNx0ZYwCKtw+GdEUnMLsp4IY5Br5u0744+KiPLmt7jOMByM8/lXq3w413WfGNpK9/qk9nIhwAsPDe+SMfhUyxXKtjT2d9bnptvoWiAAR6fa8dMxivF/2ltESS90CSxRYpUimV1jUD5Mrt/rXU+N9A8UaToLX2h+INVv79ZUAgSNPmUnBwAvpXS+GfCkWreHLC88VWz3GpeVmU3B+ZO+PasKrlVi4wVmTJNa3Pi7WJF02Vprhma727UjcZA9CawLXVria8ilnnIaNsiTv9M11HxOCeJviNrKaS0P2OKRxblAVURLgA885rk9J0u7udXS1aEeYh3Mr9MD1p0o8kLPcrkd00jtfDdzFexsGulYMzZhnJJfPT9e/vRaXNn4dvNVSeyhvTLE8MQbrET0cfhXsvwm8NeHLyaO4v7Ky8/lV844wR6Cu3k+C/hS6kkmZZJC53bgRXLWzL2C16muIoWStufIFxcSysD5DcVcjvlazETgowB4Ir6wHwP8JZ/495j+NPHwM8HH79rIw9N1cn9uxW6ZzKlI+MrxnQckYxnNdj4D1SeLQr6OOE3HlTq5jB7MMZH/AHzX0Tr/AMMfhb4btzPrCw26kEBWclm+ijk14v4p1Pw3FqSHwZYPZadIjQszjDzSLhg3XgYJArqw1aVeLcYNLv0NqMeWauxn9ttbapFDPpk5AIbdH39q9a0YJNo15rdk8trPJBiFZgOHztBzz3NeJ3ev3L3ilotmweXhVABGc5PJya9y8N3mnN4LsHuIwYtRxbLCjEEuzYwD25FFZttcu569K1m2c1dQ289xKWmjkk3EyMCOW7nj1OayNW1HTNKTMsibj0X1r0Pw34b+Hl1HOttbS2rRuqTJI7AgkZGfqOa3bj4U+BZ4xNcafC6dQ7yZH55roq5wsPBQnSal5ngzozlJtvc+f5fFthKVWCP524+bpWlBcQ3yxvbMRhQ0gZePwr1O88HfCHTDm5GmRsO3m8/zqj/aXwk0pt9pG0jLwBAjt/8AWrm/tHF1v4VOX3Gfs1H4pHnGqs2mQbrqIw7hkMRxj1zUaRnVdCF3bguts4QsB/C3r+NdZ4h8a+ELm2e2s/C91fDJKi6lEaD8znFeW6l4gurcXFqYUsobuQfuIJgIQg7HnOa9mlRxFeH7+HKiqVVU5XTuWbu/srFsXF184/5Zx/Mxqo/iW6xssNGL+jz8n8ulX9BXRtKvLS9K6fcJHKsksU0ufMUHJXPoeld74i134eX99Ld2ji1SYK3k26YWM45GOn5V1f2cqSTUG/xM55jOTstDzy18Q+NYUK281tZoecCNM/yNQP4o8WG9W2n1uZnbn93gY/SukudS8IDJh1Cfd2DJxXML/Zf9oSXTaqhBJwPKauyjh6jWzRg6zluaNnqXjaS0NwddZF3lQrHOcd+lKfif4y0tmgu0sdQiXr59sjg/oDUq614eW0SFrt2KsWOIyAaibWfDfOZHP1jNP6tVtb/Il1HfVEsHxG8M6k4OueBtN80f8vFj+4dfcf8A66t3vhPwD49KvpPiefSL0jAg1BcqT6bv/r1z2qS+Hb+JVt5jBIDksIScis42+ktDt+2YkHRxCwx+FH1XmjyzX3FKb3Q/xJ8IPFfhZHnksl1CzxlbizPmKR64HP6VzAkMaBXBUgdD/Ku107xPq3hoRf2Nrs8qH70RUhB+B4rUvPEPh3xVEP8AhJdBCXY/5fLBhG7fUdDXn4jK5LWDudFOrbdHmy6pGowYQaK7/wD4Rj4cP8wuNYQH+ElTiiuT+zanYv2iPpq20fTuB9jgH/bMVow6Hpxxmxt/+/Yrnx4nUcLbsfqas2/iqQDPkAexaun2U+wlJdzo49B0w8Gwtj9YxVhPDej450yz/wC/S/4Vjw+LBxvtwPo+avx+K7MryrZ9BUulLsHP5mlF4e0deRptmP8Atkv+FX4YrO1XbGkMQ9FAArn38Z2kas3knCjJLEAAVyup/E6G9GLb93B/fCfe98kdKqGHbdnoc+IxkKMbyZ6Tcatp9km+e5iQemck/lXO6t8VNA0pTuM8zdljT/E15pqmsSSqztIcH0PJ/GuH1W+Zy+OAa6Hh6cFqeLPNq03amrI5fXrHR5/GGpeItNtbm1inmdlgmkDjJJ3dhwT0HOKht4rYX32sIPPdfL4PUcdqfqRJQrkcnPNW9D8F6vrNnd6hbRItvYp5pmnJVWxztHqeDXhV1KM2j7DDYmlLDqpfTqdR4YXT7jUdHvNM0MpNpc3n3t6vKud4G3k84GeAD34716OfijMCwW1iGDj7xq14dEzeF2hutHSxlgdTNEj7kKsoKuv+yf8AGsLUfCtpdTNLHMY8nJAFTPLPrFNT6mOJxUaj9x6I2IviNeXDBhBBz2Oa5jxT8dLqxE+maVbwG+XKvMPmWE45HPBb/PPSs3xLBYeE9GudVn1TPkL8kIXl27CvGhf3Op6LfagG/eLOLkxBc7QSQTn3449qeBySl7X97HboYxqTS5jTvfEFzrT6g13O1xdrA0omeU787hnP4E1jrI8/h2fy9kSwyRSFk7ZU85PuBVfSLK4m1S7iRCA9tKBuYA/cJHX6VmXseoCxSzNwsds4DGMOMMQTjP619Eqv+zOMo2WwSj+9TTNe31i/OFuIA0gUEgjG5SMg/iCOa3tH8aajc+IfD1peSfZtLsLtJlijHC4/njJ/M1hWMpivBZ3EmVWCN7dwc4QjO3PsTitLQ7CO711Jmb92oOG68c8fXqfwrwfYOM22tj1I1bxVnudn4x1FdH8ZG509mFrqaK0RVztY5IXH/bRSP91xXQaL4hsvE7QaBeSlpDp7XUc5yHDCQqQyk8kLg49jXnviEC7sLfS5VmeXbItrIMAqyHKqPqNo+tZ1z4otofEWi+IrQyrcpbp9pjYfJ5mSGIx65yR6k16tSEpLml1S+8441Ip27MyfFc15oWs3NnqE7CdHxmMYVx2I9qpWGoxXrhPtMm7+67GvW/HeiaFrviywF1M0Ud9bpcQyoBznIK59zj6E+5rmNb+F1nLo326wle0v0LYt5nB3kE4Cn1IGa7YZhVik0lY46lCPM1c525W0tSFnkwxGQDVaSfT3G0lCPeoNM/4mP7+5wzxDy2B9RWsIYgOIkA9gK3eZOWqWhMcN5lBZLQDCyoo9hUitaD/l6X6Vc2oP4VH4U3CkfdX8qX1+RX1ZdyqFtPNEhvAR/dK5Bp4/s/GTMlTHaP4AfwpAUwPkH5Uvrr7D9h5kDXGmJ1nXj0FMW60+VwiTrk+oq0RG3/LNfyqvPYW9whGwK3ZlGKSxf90XsH3Fns0ADqFOOhBqrlCdu+Mn2NZ0VldalqC6Zp7SOSdrBT1NdTc/B2+s4YDLfWi3Nw2yOLecs2M4z06UnmUV8MLkexfcyRCSPQVA2qWdoShdHI6jGf1rOvotR0e6fTL1XRlbYyP1U1Uk0+YOVRC/POBVSr068LJFU3OlLmT1Opt/EOjiFQ9ujN3J4orlhp1yRnYR7GivP+oUvP72eks3r9o/+Ao+topG9SPerUfIzuzW3F4d09jhkY/8CNaFv4Z0tB/qST7sazWJSOH2TObVwOAx/Op4m7Z4rqF0TTEAxbgn3q1FpVioGLaMfWqeLXYSos888SXa2+mvAQWa4GzZ6r3/AA7fjXA3uosD5asBjqB0rY8feJBfalOligSNCY1I9B/jXn95dSRJzkkYJ+nenKpbU+cxMvbVWui0Opsr6WWOBpHDJKzRAZ6FQD/Iir1poNxrt5HbafE00knbHC+pPoK4nQNU+1GGOSVo4FkOMDJO7AYj6hQK+kvDsmk6JoP/ABL0hilkUFTK2Glb3b9fSuWriLIUaDvypHC3vwq0/S2gllka/uP+WkCNhVP8/wA+tdP4qltrD4aL9j8uNZXETKOoLKV2nvkZ/SuS1z4g/wBoarf2UzmwvLF+F5KXUJx8wxnBGc1BqHiybxYmg+FjEBPJeiZzuz90kZ91w2c+1csbyknI66tGVOk9D2Lw3qEF3olwJY032kf2Fsf8tAsakZ/76NeXtr+odVtsf8ANa3w91K51bUpoog32EXDymQniTBAyPb5V/LHrXphs7YLkRoMDP3RW9Kq1ojuy69SneXQ+PfjX4jk1K9stHzGhQebKuMfMeAD+GfzrkTe3GiWsPlEoHlIlXs6qoGD6jlvzqLxRf3fiPxvqd86l55rl9iqOM7sKB+lVdcuoz9ltE+dbT90vGQ7dST7ZJx7V0c1k5bN6I9DT5GhpTJb+KFjZzIrh40dm+8GU4/QiqEzLLFE2z7oKnn3J/rTdNKLfWUm15DvjcnfgZJBq5dpbW8s0AilJjuJF++OnGO3tWvPUnRkr9RJRU4sh1oNJFps0WEcWnykd9rMCPyq3BcS6Peq0chZYvLbOO5Q5/U4pwlgH9jNJahlRZSVZzyA7GqjTbpJ8pDwOM5bHI9frU1aUpPV7xKhNR2XU6bUL439haTqzl4r04CdeVU4H/fNc3qssebaa6idZ3MqTxMMBWBBJH4tnHrXU6YUtNKs5nKKr3Ak+UAbgE6qR3BPIridUZZ/n3s873E8gDHqgC/zwfyrCd7Q5Xqkatq8rrc7m3e88TeCIZMh73QJjEqqcb7dhnA+hHH4V0ul+NtP1DRzqGqQQb9Pi2vNkEmTHy4B5yw54964nwnc/adOfTIiyefD5dwyHlcsDn/vkAd+fpXoukfBLQNZ0wR2+vNCsir5qTuBkrkg5/E1qqyi7Lr+ZnKm5Rv2PFdBGrarqF1HpWny3LSybiEQkJn1Paujl8EeOXOf7MkRfYYrvE+EUHh+8EWiavqkskqhi1hIVVh2yx4/OtuL4aeKHgdm17xJb7RuGLqOYN7YVs/oaIxrJXitCNFpJ6+p5C/g7xtBw2lO31qFtA8Zx4B0dvThc/wBa9ztfhT42uYFns/Gt68TDgs3I9iGGR9DT/wDhVXxIiOU8WzE+4Q/0pfWKy0ugdOPVM8BuLDxTaOUn05kYdf3eagca9H9+2K/9sq+gn+G/xRDAjxIkhH96CI/0preAviqOup6fJ/v2kX+FV9brdxezj2Z8/wAX9sM4BikwfSE1e8q4QFmguC2P+eZFe2SeAvimzA+bozY9bVBUT+CfipESRb+H3+tuv+NTLFVHoyowS2PLfhBaRxeILiHUISss9rI0SuDl/XHfOM16fAlmmn2a26tFLyLZLjO5fl6Y69M8dcVia78L/iVrE1rc/ZNJtbm0YtHLajym+mfSrV34V+K81snnabo8k0HzJcZHmA4xke+KdGtBRtNamU4S5vdPN/iost3rkEbiF9Q+zqJRbg4LZOMd84xWQula7Oo8qymUEdSu3+degaF4Q8T6JdXF5q3hqPVLuZ9xnllYMv0IFdPGbJos33ha9hmzyIp8r+ZxWXtJptxRokmtWeM/8Ifr7/MVAz2MgzRXsDf2Jk50XUgfTzf/AK9FP21XsHLDue0JKP7xFTafIzM6yMcg8HPBFV0bdgEH8quwoQB+7x/wGsTRGjEgIyMfnXN/EfxCPD/h10hfF3d5ijx1A/iP5fzrejT2cfTivHvixeTXfiQ2m5sQIqICfUZP8/0qJysjWnHmkkcJLcGEs3mYycsDyDXP6xqIuGFqiM27/WFew9K0PF2kan4fvIILpQpuYhNGVYNlTkZH5VQ02y2ku5Bc8ms6M5tWvoebmioKekffLFlCNix24HH3UUYrs9Z+IN1p2gW1i2z7ekIWaNiD5bHPB75xgn8BWHJbvpFnYXpRBNes3kbuwHG76ljgfQmsPxRo0VnqYa7tVilaBZHyTyCuSx/zzWrXM7HDh1yr2n3GV/aFzHbyXBmYzocmV+mMDj8j0rqvDN7qNlHc67dI0V3NEbO1H/PNSvzsPfaQPbcPSuR0rTrnxJqUEUMb/Z0fbFHjqxPH1JP1r2H4r6PD4Oh0LTlZS6WA8wjq8hY7m/E/yqKs+WN0bwoyxDdJOy6nrfwstrODwzavHs3tEN2Oo9vp/jXZgRtwRkdCDXkvwH1KS+0qa1dTmHOM9xkV6uYiBzgUUZ80b2PThhVhl7OLueGftB6FYaYNHfSdOtbVxHPgwRBDuO0bjgckDP518w6wksWQ0ckTAnJYYzn0r7B+PWmyS6DYaguGFrcFHx2Vx/iB+dfO3iTSk1CynYKN4TI4qnWlfkexuqSlC63OJ06F5rFJERi6ylePYA1sa1p1xFqV5+6YbmST8xn+orGs43isI5ASVLOTjp0UVsaxcJNIkgTPm2kTE7s8jaD+oNd0KcOSSl2ucrk7q3cZdWc72emsEZeZl5H0J/nUttpTSJLK53J5TBvmCkEFT79s/lVUyrLpAXBLw3QwN3Z1wf1UU/SLxtLu/tRjU27DypUJyMHAyfzP5VEnTsnfoUubmfqdHBctpHh62t5SJo55pWizg7cqFP8Aj+FZngrw/D468YWGmTyyW8N1MI1eNASidOnTtiuo0Xw8001pa3yF40jMkcnZgXboPpWz8LfDkFt4z08Ws2yWO5jIAH3hkHr9AR+NZWcYq3ka25nZlu/+D3iLwNNLHb2TajYgkrcWw3Ej1ZeoP6e9UNKsr251FIN08EbcSkgjaO9fVxZwTxnHqK82+Our3eieF7K/hg3wpfIs4A52srAH88VNGnH2kefa4TqyUHy7nNWNytpb/ZbDy44osKAWOck9+P51q6drDpIP3mT3IOa4PT9esjZNJFsV2iMhVsgkMfXt34qXTNUhKBbaRCoOMKelfawxEGuVbHzc6cr3e57X4c1aIyYbaTKQGbv7ZrqSC3QV4no+vxWs8XmzrGGYINzckk449a9lJnUjJU+vavm8zjBVFKPU9bBSlytSJdrDqBTWBx2qFrmcPtwOelHmXJJ+WMj6mvNO0cyHH/16iYZzwSKVzc8YEYGOetIzsuOAWpgQyoDztqrKAM/LViSRs8qv4CoHY45P6UWAqSp6LmqM0aknKL+Iq/ImRyxqpIRg5zmgkzzbxk/6mP8AIUU9iuTz+lFAFmF8EDBP0q9BcHJzWZED2cflVuE+ufrQCNWOcMAcg/jXh3xBv4bjxhPcR5aIlQD64AGf0rv/AIkeIW8M+Cr++idxOyiGLA5LMcfyyfwr598K6k2oWDm4yWhnIyW3fKeevfkGs60bwua0W1USPRvihpUmq6f4cuYQHlWKRDxngbT2+prjLjS5rWNFmVV3g7HDAqfXDDg12vjfxXY6XYaE0XkEiMyRTu20RSqRxyOh7g9QcVyZ8ZaPF/pUEUMUkr5ntLa8jlgY/wB4JLkEexwR0BI5rPC3jTSPKzrD1JV3Up6pnS2unaXqfhKbWdYskmg0nZbwskrHY2Ccso/hLHr/ALXtXneoyXuuO+oaguI5zjfghcKAAiDsoGPfkV6xo/jfw0mnGIWdr5UhE0sUvloHYfd4Xhsc8CuX8Q/EDQNY1PCaYfkbmXeAqfNk4Udz/QelaxTvax5kIVnHlijb+AvhpdS1hdYFuVs7A7EJT5d2DgA/3hwfbNWvjJLFq3jVgfmSzhSDB6E8sf8A0KvX/A40FvDlp/wj0AisNuVTGGBPXd7mvCvGwnn8daxEASVuWIHoM8fpiprLSzPoMBh1SSieh/Bi38mG6kdQqhcA9O//ANavT96OMg8VyHw205dP0EMy5MhGD7Af4k11wlUAcD2opK0TqrO82ZviPw/a+JdEu9JnyEuI9ocDJRuoP4ECvlrUNMm0u/utMvI9s9u7ROD0JHGR9a+uvOUAZXH414f8dtCjt9VsddhjIW6UwzMo43r90n3I4/4DSqL7Q6MteU+Yb2GTSZmgBKnzJQB/s8Y/lVmzKT2yyyRhzh4wAduABu6fia3fHOhSPs1SFGKqpWTYMkDsfpXNmO4j060RukjSuFCFTggDcT6cH8jXdQlfXdWOarHldttS1am2kS4jMCrsVZOGOchh/iat27LbPLDJbqtvMjRysRuKcEhvwIFZWlxwul5GXMLvbtt3KSCQQewPp1rd0HWWthH51imoQupilQf8tFPBHsR60KXuRly90Fryauei28ep2Wn2B8hnvIbWPbIo3B8MxGO2CKn8JSXPhv4iaTNe2csVg96YzOEJSNW+5luwyfyqFPFY0zTRZNot5HaQxkRzyzru2noq4zuGfQevIrpPCN/NfajY6esohtriZF8lFDockcqTkkdQTx09aEueDbd7W+Ro9JJL/hz6BMbY+VxntWV4l8O23inQL3RtROYrpNu9RyjZyrD3BAP4VqMcZw36Ugb+9k/hXMtBHyV4y0HUfA8ElhrMTJLHgR3SxZS4jBzlXJwc8cdQT0ryoXckt28weQrGD5YJJ5PA/nn8K/QW5tLfUIGt7q2iuITw0cqBlb6g8Vl2fgnwzYTiez8N6Rbyq24SRWcasD7EDitJVZS0uZ+yR4P+z58IdRur+38Ua9bPbWdufMtYZhh5n7Ng8hR156/SvpMxxqSdi57mq72qNlSXUnqVOD+lCQFFAWeUfUg5rNstKxL5ajnbSsgx/gajVXU/fVl9zjFAkXB3Arj1NNDFPAximMpPfApPPt2BxKn/AH10pjTW4zmRfrupiI5Ov3s1WkYDvTpru2/56xf99Cqc13bD5vPgx7sKLMNB0koHOc1RmmT8KSbUbJRhrq2H/AxVCbV9OUc3tsP+Biiz7CbQ55E3HGMUVQOu6YSf9Ptv++qKfK+wro0EjDxldu0twSDg1ZhSS0RQjAqDzu5qvC4wDmrqnIwP1qSkYnxD0d/FvgTUrFB+9QCVVHJJQ7sfiAR+NfOWgnyL64tAu1TECB9D/wDXNfVdgQ0pCgOpXa4zjmvnKTQY9P8AFermRPKSzuHhjTdkck9z1wP5irSThJMcU/aRaNtJZJ9GSNjnYSuG+61czeaDJcMStjpLf70Of1rqIbuxaCTTJZNs0qGSM+hA4b8+PzrmdevrXTtPmurqWaYRjGwHG9ugAA7e9XQiuX0DE6SOL1qF9OuzHtsomXtApA59ear2U/zht7F+2xCf/rVz899Nd3UlwWVC7E4A4X2FSxSu5w95j2LkURkrnM7s92+FPjrUND1IDdN5BGHRxhXH5V0jldd8X6hqcAIS4uiE9SM4/pXl/hS50bTfs0OjudR1GZt09xKqgQIOygkn6mvY/CWuaNqCA3NqEubYi4ypwJgpzx+A6VjXl7R2SO7DQ5Vds9l06zSxsILZBxGgX8e9T7G7AD8aZa3CXttHc27h45F3IR3FTbWzknrStbQzeuozy2OMnNcR8Zod3gWclFJWeI5x935uv9PxruQMdGyKyvE+hp4j0C+0x22/aYiqseiP1U/gQDSaurDi7O58zWyBz5b8qwPXvXGeIY7retyj4spoESBTHuVQOSufb/2auu1Kw1Dwpq6W2q28kNxBKpKk5DA9CD0Iz3rV0rw+kTXFgkjSWUkjFbdjuTqSCM+1XhJ1FJqHzNMQoOKcjy6yt4jpTwXTCD7dOIkuV5CovLZHXGSPyq9pGh6lpjS/agjWkgAR43DKy44Ye1dH4s8EGztBeWkjRpFuhW3eNtqZ5znHuevtWXoEZ/sp40y0mCp9MmujEyhKKpLoc1O6bmx+qk2Olra4jjmA+8OAoPr7n9Px49A+BtnaR6npct9mKdS6QZY87hu3EdOCePzrzm60y8mshak+a2cFjxgenvXoPgWFrCeyEhIaDbh/pgAflRT1jZKzW/mOb1vf/gHul1pviZLh1j1KJ4wflJABI/Kqr6f4qYn/AE6PB9x/hXU20/n2kNxuyHUUMQOM5rP2zWll9wvZp9Tlf7I8UsDnUlB/3v8A61IdD8TkDOrj8zXVtPDHgvKq/wC8wqFr+wTLNdxDH+2OKftpdEvuD2a7nLv4Z12T/W6yfzaon8G6wwBGsZHoWaujl1vT0XcsjyDtsjZv5CqjeLLFGOyC8c+gt2pqrUey/AThEwz4J1ggg6mp/wCBNTW8C6h1Oorn6mtl/F+7mPSL9/8Atliom8T37AtF4fuiP9o4q/aVf6sLlgYb/D65JJbUAGP8S5qIeA71CRLdJIuOCDgmtiXxPrQ6eH5Mf73/ANaqsni3WVXnw/Lg+5P9KOer3/IOWBnnwNDwbi7eLPqP605/h/YlT/pc/wCGKWbxfqU37ttAkbP8JDH+lU7jxNrobdb6NLETxgoxH5YqXKt3C1PsSN4C0/OGnuCfqP8ACqr+B9KT7xmbJ/v4ok8ReKHIP9jbc99p/wDrVSm1HxbJytnGgPOdoH8zS5qj+0DUexM3g3SASPKk/wC+zRWcbvxdk/ux/wB8rRS9/wDmJ07HXwsuByc1a3qsZcqeB2rLhlHA6fjWhA2B93j3Nc5uXtPMTP2Vtowv+FeNfFWzXTPE+oFY8G5jW5QJ/EcYOffKmvYYgm4OY1LDgHHQV5T8fNKa4/sq9tDMLuXfbFF6FByD7EbjzTinsilLldzzvTZ7X/hI5ruV3FrfWoSGQDIR1QDacdOf516h8L/DGl67qOpR6jZwXNibTY8Uq5U7mH6/Kea8w0bwhexMJSYfMZhuLuSc+pOOa95+EmlyafDqYl2NIWiG5TkYwxH86392NNpO7M5c0pXa0PGfir+z1e+FTPrPhlZNQ0cZZ4fvTWo/9mUevUd/WvIBGu8Ky/pX6FLvH+eteYePP2f/AA54vea/00HR9TkJZniX91K3+0nb6rj8amnUS0ZEqb3R80aBPBpcEpgEckshG51OGCj+H867Cx1ouq7UkRjjc/t7V1Pgj9lfWIdTlufEmtQW1sGbbDZHe0voSWACj8CfpWX4n8G3Hg/W5dLlkSQKA8ci/wAaHoSOx46Vy1m+a51UH7vKe3fDDxRZXVgmnxKyMgyA7lifzr0DzDjp+lfKnhvWptFv/NiYh8YAFfTmjSyXulWdzOpSWWJXZT2JFOE29yqsErNF3zMdFIH6UhuCf4SKURgnqwFAXHft3qzE82+Nvh621jRIb54AJYJBG0i4z5bdj7Z/nXnej7LQQ+ShZV4AXv8AjmvoHW9KXWNHurCVVInjKj2OOD+BxXz9Ek9jcujoMxuVeM9QQcGu3CW1VtTGs3ZHZX2hx6hZOzKZAoGI5B0Pv3z2/GvJH0Obwl4gu9LcnAOVJHyuGAZT+Rr2bw9INQtvIU4RuXPel8c+EP7c8EWWpRQ41TTLcLIVHMqIMMPfGMj/AOvWdRck9So+8jyN/Lt2C4Ekp6KP61fsJnhuopWYlgwPB4H0FULW3AG5QCTzmrkYZCNwxjpW8bvczaSPofwxfrqGhwLn548Yx9P/ANVaZh3dHYe4615l4L190uIYx91skj3O1QK9QJQcE9fQ1x1IOLNoyuQy2CyjEgLj3ANUJtCs1cFLG3fJ+bcvNaRc5xkUCZjwSpPtWetiyLy4IECYEQA6dvwqRYIwwdVOfbNG7zFIIDA8EEVEY5Ex5J2rnlDyP/rUtQJjEhJOBz1pPKUE4QflVaHUkldoXBimXqjcZ+nrUrSkdc49PWmIHxjkD2yKiLAHGAPwpXlz3J9qryPk7h1HXnpQASv15HNVJJCMjk09znPQVVlbOeQcd6YMgmJ5qhM/UYPpirEzc5349BWfNJ05z+NAiN5QGPFFV2Y5PJ/OikAQSYOBgmtK2c5OSP51jWspJANaFvKo4yMe9AjXhkJwCPyrhfije29zLYWowZrffI3qmQB+taXivxUNAsNkBzeTZEY6hR/eryi91JyJLiaRpJGOSzNyaT21LijTt9Rt7fZFOCVc4yo6e9eu/D7RZdMsX1CeaVri+RAULfIiIW2kD1IbJP09K8w+HfgubxLfx6vqCvFpkJyqnjzj6D29690TYVxgYHAA44pRuzSbVrFxLnHPGKlWTe2dwx6VRIXA5XPqKUzpGmHdfruxVWZmaDzLGheRsKoLE56CvmbxxrT65r19qBY4d/k9lHAH5CvbfFmsxWXh7UGSVWfyii7T1zx/Wvn26IcSnPbNY1fM1pI6L4U+F/8AhJPEcb3OBawHzHB6vjtX0mjR7RyAAOPavEPhFdW+k29xeXL7N/7uMDv6mu+m8dafGCF8xj7A1pQpTcb2JrTV7XOxWQE/eGKN2RwwyK4KTx8p4iSTnoTgVRk8cXj8Km0dM11LDTfQ53VielbxkfN7V4d44sZtP8XX6743Sd/PA29m5/MHIrck8V37kjcADXn/AIh1ae41a5mAkaYsFLu2QuBjgfStqdKVJ8zIc1PRHa+CrsxXIQgFHOPoa9Zjnt4gbfzVVo0VmUHoGzj+Rr520vUHs0U3ILWsxKO4PMZ/vD6Guos9d1L7Ognl3zBdkjk5L44B9+Kia9tUsik+SOp3fi3wdpHiDS7iG2Sxtb91DRXKqqkMDnBI7Hp+NeJ6nZX2g3EllfblmTGVYhgQehB9K7Ua3ekfLIF+mK5fxXHcX8iXc0x2IArDAzn3pypSprmuEZqbsHhnXxZ6hD5jqq7xyxwB/nNe3aNr9vcWhE0bQvE7RlW43AHhge4I5r5oXAkYgZX3r0fEVnpdhHbnKPHvLKDhicetTH96+Vg/c1PXf7W0/dzOij/eFM/tXTyABdxDv94V479plAwOB2ofVvKBEk6L/wACH5da0+pruT7fyPXpNasUQlboNz/DUY8SWSkD7QvPZjjP514++pg5G+Q/7oJqOTUCTgRyOfUg/wBaPqi7g6/kev3PiHTJYik00DezHn8KzD4ntbMER36soGBuOR/jXlkl3Mx+W2kI9cinLLMy82NwxyOARR9Vj3D2z7Hoc/xGt4GCvb7iW27lbg1Vm+IsSt8tofzzXDzWM+pDDaReKRyDuNLbabfACH+z5x/daVsfgSe9SqdNOzG5y6HXH4jISc2RP41BL8QomziwlIrAk0bVYsf8S9eTxmQf41SuINUjyptIlwcZLf8A16OSl0/MXNI3pvH6E4GnS/XpWZc+P22/LpzA/wC0/wD9asSaHU2PzQQj3qhMl2hO/wAnj/ao5KYOUjabx1dkkiyTB/2jRXN/6X2KgfSilyQ7E3kehQa0gIG1qux6wkh/1T4P0zXJW9jcIQePYntVwwXFvHJO9wVWJCxCgdqw5Y9zZNmB4v1P7brMpQnbEBGMnpgc/rWTpFhJruoraxoXA5bsMVSv7o72Yks7kkn1Jr0Dwd4Xew09LiaZ4Li4Ac7WwQvYVild2ZreyudRaXeu28KQW9pbxRou1QCOnp1q4lx4mkIGbdM44yKz0sgmCb+4LehlNSx/ZgQTdbj7zN/jXWmui/Aws+rL4tPE0gLNe2yk8Ebv/rUn9k6y7HztUhHrjJz+lV0+xL96ZWyef3rf408LpB4PlOD0+dv8afM+34Bb+rmT4u0q60/QbmaW9SYDaMDvzXl0CvPOYgMs5A+vtXpPjqaxj0ZYraGJZJJR9z0xXNeBtIN5rscjqvlQ5kYHoew/U1yV/emdFH3Ym3ZItjZxwLgeWOfc96nWYkZ2jnnp/Wusa1gC58uzHOceWM5o8q1wMzW6j0VAP/1V6UKyilFI5JU23ds5XduY/Jgn7uKt2Njc3gIQRrj+JjgE5rYma1jUl7tFTHOOM/lVK4lswmTdzg9gYjkn2HX9KbxCEqJEdIlyMzwZzjAYnNcr4tsmsrmFmKnzFILAdSD/APqrpBHK7MFeQj/bVlBGetZniawmm01ixd2gO8cccdcHOTxUyqOSsNQszM8PmKexmhcB9r9PUHFaunAR7o7iTZAoxHj5iD/drlfDl8lvq/lSPtjlypb3rtILYRF5Un3IpyQp4Irni7TuaNXjYCbIL8rXDnuVAFZuvSRHSZwlvMm0A7nIPf2rXeZP7qPz2NUdXlT+y7wLA0jLC5CDoTjpXVJNxabMlZM88V+xr0Lw/LHfeH7H7XJKvlGSJSpxlQc/1rz+1eDUJIVt5I9kjBfMLZC59a7LRpPs2nCwE8bGCRyCo5IJHJ/KuSj8RtPY120rTpmLbZHHo2TzUkGlWEJJWEIPUIBVT7ZJF1dj9B1pkl/Iw53kDtmuxxZinE1WSwjTDRkk9jxTfPsAD/o8eR6jNY3mtI248gYGSaOD1Zc59anlvuw5vI2WvIOB5aL64FSxahYRMCYHbvjtWCXTbzn8qYzkcZYjHY0OncaqHXjVbdo2jSDaCD39vrVZ5YWiXjG3gHJz+HNcnJdzIvyk4z61E+oXPI8wisXhrl+1N241uewZdyb4wSPlDYP4Z4NVLrWnnXciIAwznrmsW4upJ4jHKxZGHPNZEs81u4VmLx4wr9x7EUlQS3E6rZvT3LSKwkkjQZORis+b7GMF7ktjsEzVOWcOgfdwfT0qlKyqCCc++KvkSI52aRuLME/vyf8AgIorHLLn7xopciFzM1k8SznHYdKW98TSTWM0ec7xt6dM0UVnOKUWy4ydzC0qNZNTSWVQ8cJD7T3Pau9Pia9mAHlJt9KKKVGKauy5t3GHVLi4B3KqjPrSm8kGAVB4PftRRXTFGbFBlBEm7agBJ5zmiG83qXBDKP4kBGPwNFFEnYErmdq94t2Y1V2dFXI7cn/9VWdAmntrHUfJCfuzE5YnB2kkHnHqRRRXC3ed/M60vcsX4bu7uGLi4AAAyoXI/M8/pV6COYNummLY/hB4I/Kiiu1o50i5DLbWx2lmVehHJqd9VsosYEhOOuOtFFEIpik7bFeTW7Z/mW3ckccmqz6kk52LEBwcqSTxRRWvIkRzNnHSaKLTXIxGSyFvNUE9VzyP6VqR2ssTTSRzNGEQ5Qcgg8YoorncU5M1T0NRtMMsaybyu4BxtYjrz/WoxZYkUfa5gG+Ugc0UVsm2ZtJHmXj3wPNoFw/iHTXUQl8yIcAoxPBx0I/lWn8PfEUkOn/ZrnfdR7xK64AZSc5+bPfr3oorka5amhstYHbzNKNs0UIktpEDxyb8Myn2xxUTzlULtC4APYj/ABoorv6HM1rYrRakjsVWN/xxz+tLJqSRkggoMgA4ziiik9A5SA6zAQdzkYJX7p64pg1W3ckLKxOQCACMUUVCk72HYZJqECuVLk468VWn1KzBG7d9AKKKG9RbFV9Vtn3FEk4HTioHvBNGcQEhhzkgZooqU73GUzJJDzGmFHG3PWoxKJl4JHJHNFFRKTVh2uREDP3qKKKLhY//2Q==`
html: "
Thank you "
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install WA
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page