vg | tools for working with genome variation graphs | Genomics library
kandi X-RAY | vg Summary
kandi X-RAY | vg Summary
tools for working with genome variation graphs
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of vg
vg Key Features
vg Examples and Code Snippets
Community Discussions
Trending Discussions on vg
QUESTION
(new in javascript)
I am asked to remove a country (China) from the dropdown menu of the plugin intl-tel-input
the code below displays the dropdown menu and it looks that it calls the utils.js file to retain the countries
...ANSWER
Answered 2021-Jun-11 at 12:14If you take a look at the intl-tel-input
documentation regarding Initialisation Options. There is an option called excludeCountries
.
We can modify your initialisation code to include this option to exclude China:
QUESTION
I want to create a nice graph in python, so I used plotly to create a graph, but I get an error.
Maybe because I'm new to plotly
, I don't understand the error in this code.
The only thing I can tell is that my code is wrong.
I want to display multiple graphs in plotly.
ANSWER
Answered 2021-Jun-07 at 03:56According to the documentation on adding traces to subplots, the add_trace
and append_trace
methods only take accept plotly graph_objects
. Therefore, your code block:
QUESTION
I am trying to send out an email with node mailer, and it is sending the email, but I am trying to use an image in there, a base64 image. I've converted the image to base64, and done this:
...ANSWER
Answered 2021-Jun-02 at 16:51var base64 = `/9j/4AAQSkZJRgABAQEAYABgAAD//gA7Q1JFQVRPUjogZ2QtanBlZyB2MS4wICh1c2luZyBJSkcgSlBFRyB2ODApLCBxdWFsaXR5ID0gODIK/9sAQwAGBAQFBAQGBQUFBgYGBwkOCQkICAkSDQ0KDhUSFhYVEhQUFxohHBcYHxkUFB0nHR8iIyUlJRYcKSwoJCshJCUk/9sAQwEGBgYJCAkRCQkRJBgUGCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQk/8AAEQgAtwETAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8AdaWUxx+8f861boSW2kK4Yq/mY3Z5qzbQKBwKqeJD5Olxn/prRWptQbRtRknUSZy19mRwWOWJJJPemxoBjP1pJ7hVCu/ABxxzzTZr6G3kKSZ3Dk1z4aSVPU7MRH39BurSXM5iZNkWx8qDzvx6+lYWvI9/qsUxBkcoSGRuM44/CtnVLlLnS2mtCrNHySeoHpXLXDvahpYn3O3Own7o9BXj4mm41HyHPKLRBOxCpJJlpz94NyR9Kr28MkqvIkYUZz7itFBCYle6VkkHIBPP/wCqqthchrgo0oKs2MJ/DWHPpp0MZb3L+naoLWeK/wDMNu64IG0jcR9e9dLqd9rcjQatNOAtw3JikAbA9QKx4rOCW6W3uroArEX2su4D0/OtqDTpJdQsrd4HjU4VlKHYM+/0rKcr20KijptL1XU728s4xMpAYE5AwQe/1p2reJ7G68Ri2vI9iRv8wLYBGMZNc3r2u2Gh37aOlvLNJCMKyHZ5fod3U1R1OLQtd0S+uBPcx6pBCZFl3EjjsalZbPl5+V8r6j543tfU0fF2rJYDf4f1GZ4WYhkU5VR6Vwdz4vuJJiZHODxtYnml0K7t2tE+338gyB8mPve1SeJpNMm0DGmWp+1xMDuAzkGvawdKpQVkRu22wsvFQeRYponUMe/AFX7SeO7kQ2sYkmDHahXK/lXI6XbSyJb/AGhW3kfMGrpdOtxb3kgjJUqgbg9ORW1am6r5mUtCaWPU0uriOa3ZpZB95eMY6celUHuLq9uF+z2+9kJLn+9jvXqHhfS4L2eymljEjsSCW59a8/1aeKz1jVbJ4x887ojdAnPTiuWWDnCPMVz3djOvQbiEu1wgCAFo1Y5OT0+tSxW+mWyNI7iRkX5k3lWOR0we4qeW1Eej2ciqd01yybxHw3pzSz2BvnazPlQzW7lWlk7/AF9axdOUVe2jDRvQqGZLW4hEMMtsy/OA7Esy96gvtXOo263DqFt0O0KoALEdyPf1rSt9StrG2+yX1t9th+Zo3OVIbGCVNUtui6o5toRJZOWURBz8r+rE9vpUqCa0A6PwvqGjGKODVbSNNkbvHLGc7mIyuR7GrfijV7XXvCsAFnGNRicI00S7MxAHgj0zXJ291pthe3cbuwMMbIpB3IzdiKpf2ldXrMyyhgyhfLj7j2zQqUlZlxbOl8I+Jk0iObSpmYRXq7WBkK+U/VXH0NMfUvPhnhmnknilZncnGXZT1BrHk0W6ufnn2LkDbg8r+NLb6OY54YXMjIDuZscfQHtVxTvpuU6Ul0HHQZxEmqWMsHkIMHy3/eLk4G4ev0rrdG8T6poVnFLYXtxLD5/z74/ljHc5689MVi2unm2aRrRVIY9JeQPwq2I706dLYSNEYXkErEDDEjoPpXVLBVZPmSMedJ2Z7BYay3iiMQ3ulLd2DncrjhtuPvY61g/El7fS/C89x9iubWaLP2R49zh8dj6ZHrXlnh74gTwaokFteXEbxRsspB+VFB5wM16R4j8YzWngOe+i1uG7up1+zG3ZRlC54ZR9OorjipRqJNamvOrHjH/CfanI4jCSZJwMmi48ZarbxmSRWCjr81crp8NydbiV3ynm9N1df4h09U0yVgACMV7sVKSb0Oa7va5mt4/vTxtY/wDAv/rVBJ47vW/hb/vqsd7fHIqNoMJnBzUczvsW723Nr/hK9RbkZwfeioo7X5F4HQUVpyy7GfMfUlqquoZWDD1FZvjOPboyHv5wrV0y2it7aNIUCRgcAVm+N1J0IdciYV01vgZNB2mjz+6SSZYoYY2kkklVQqjJzmuy1HTfCPhswHxHBdXl3Om4xwOQE9uoqLwpoN7Gf7YS+iD7tkULoGAHdvY10h0zwvqd1HPq3lSXVvwrPNtAz6jNYYXCw5OeeqOjE4iUpcsDAtdc+G4UxxeG73aeuZTz/wCPVOH+GNy+6Tw3eo2fvLKc/wDoVdW3hjwPqEiM0cDSYwoSbH6A1ds/BPg+KUTfZo1MZzlpjj+db+yofynO/abXPL/FngjQp9Lk13wot1IkJ/0m3nO5o1/vD2/OvObWzEd8XWDCFskDqB619aWcfhO3mZY5rJWdCjKZRhgexGea+c/iXoKeDPF8tpbXSS20w862CcnYcnB+nT8q8HM8NGL5qGzKtJL3ius+n3dlfSxCWKdCoQOwySOv4VJb+NVayt7YiW5uEckO/wAowB+tcNqtx513G8gSEkfNg4PXrV6zErSRiKFNvVGaQB5OeMA9a81YS9nuLnb+Ejn1GW8up7qbezyueXOSPam2moLBJKjKT5qbBipdYtpIF83y9ivyNvIH41iRz/6SgJ719jQaeHjEynG07k18wEoCYAUHpVyS387RhslMbOoyR2IrNv5MOMAZNaUdxu05N2AMdqzaTbuaIbo5BWJA7SFOCzDrXR2zRw3c0s7+XEIwC2M856D34rkLbVY7P5yny549TXTW8J8UaA0ttK0A+0GNmPqFB6fiB+dc8KtNQZcE5ysjuNC8ZW2mGyCorIGOHc/zx061iarolv4gl1DU7K6kSeNmne3YBgw6naw9PTFZOi+G2tZ4xd35lCt8qgcV1/hnTRpev3FrbqjQyKr7VU7txPPHcYqJVrtRZ2fV/dvYxTEbjwToohnKn7VJk7evNZcEB083/wBtSe5ZiPJIUjy+f1r0G58XW9q7Wn9iWYS3kYKvk8A5wSKibxvbcltGteev7o11zw1Ga1kjzFUknszzS7sDE6M107QxAuYSjHb+NX9d0yzTR9JuIyqm5hdjhe4PBruG8c2pBH9j2nPB/c1BceM7S5VEk0e0cRjCgw/d+lZLAUV9pFe3l2Zy/gC3gY3sN0I5EW2fy/MAOT7VUjjWOV1iVFAXOAMVsaxq8F6Izb2EVs6NwYo9uR6GstoXhvJAwG10DIfaubFwjClyR1O/BS5qnMOaYhQuPxpyTYixjrULLk8c0qsAhDCvPgmerJqxqaSqyljzxWibckEY4xWZojjbIQOhFXpNXQXAhSOVuCGIjJGfrX02DcY0I8x8/ik3Wdjxa/0W7N/csoUAyt39612jEUsIlPChc/lVfUdM1Rb64f7JeBGlYgiNsYzVvVMQv+9DIQq53AjtXNCnF3YpXWhm6fpKxa7DOtyjgy52gV2viZB/ZUo91/nXGabdJ/blpGpBBccg10njHVlhi+yjG5ufyrWCjGEiHL3kcs8QA68/Wq7KSMDGKZJqAeLIBLbse2KntreSWPc5VAemetcXPFbs35r7Gosfyj6Ciqpu5VO0YwOKKf12HYw9mz6qtXWOCMucfKD0rP8AEkX2/TDHbkO4feO3asWx8WbLeLFq7HaDkt7U9vFMzEn7OcE/dzXJUWYVIOHKtetyoxine5l6L4lOn29zZyHbPFP0/wBkmvQ/D3hnQ9Uh+1XWnQTSOeZGUMTXhfi7Tbu71aTWLRpYBjLQqMhuKyNL+JXjfTohFa3N3FGhxtMWc/mK6oupSpqFRGsUr3R9a2fhbw9bOHi02GNx0ZYwCKtw+GdEUnMLsp4IY5Br5u0744+KiPLmt7jOMByM8/lXq3w413WfGNpK9/qk9nIhwAsPDe+SMfhUyxXKtjT2d9bnptvoWiAAR6fa8dMxivF/2ltESS90CSxRYpUimV1jUD5Mrt/rXU+N9A8UaToLX2h+INVv79ZUAgSNPmUnBwAvpXS+GfCkWreHLC88VWz3GpeVmU3B+ZO+PasKrlVi4wVmTJNa3Pi7WJF02Vprhma727UjcZA9CawLXVria8ilnnIaNsiTv9M11HxOCeJviNrKaS0P2OKRxblAVURLgA885rk9J0u7udXS1aEeYh3Mr9MD1p0o8kLPcrkd00jtfDdzFexsGulYMzZhnJJfPT9e/vRaXNn4dvNVSeyhvTLE8MQbrET0cfhXsvwm8NeHLyaO4v7Ky8/lV844wR6Cu3k+C/hS6kkmZZJC53bgRXLWzL2C16muIoWStufIFxcSysD5DcVcjvlazETgowB4Ir6wHwP8JZ/495j+NPHwM8HH79rIw9N1cn9uxW6ZzKlI+MrxnQckYxnNdj4D1SeLQr6OOE3HlTq5jB7MMZH/AHzX0Tr/AMMfhb4btzPrCw26kEBWclm+ijk14v4p1Pw3FqSHwZYPZadIjQszjDzSLhg3XgYJArqw1aVeLcYNLv0NqMeWauxn9ttbapFDPpk5AIbdH39q9a0YJNo15rdk8trPJBiFZgOHztBzz3NeJ3ev3L3ilotmweXhVABGc5PJya9y8N3mnN4LsHuIwYtRxbLCjEEuzYwD25FFZttcu569K1m2c1dQ289xKWmjkk3EyMCOW7nj1OayNW1HTNKTMsibj0X1r0Pw34b+Hl1HOttbS2rRuqTJI7AgkZGfqOa3bj4U+BZ4xNcafC6dQ7yZH55roq5wsPBQnSal5ngzozlJtvc+f5fFthKVWCP524+bpWlBcQ3yxvbMRhQ0gZePwr1O88HfCHTDm5GmRsO3m8/zqj/aXwk0pt9pG0jLwBAjt/8AWrm/tHF1v4VOX3Gfs1H4pHnGqs2mQbrqIw7hkMRxj1zUaRnVdCF3bguts4QsB/C3r+NdZ4h8a+ELm2e2s/C91fDJKi6lEaD8znFeW6l4gurcXFqYUsobuQfuIJgIQg7HnOa9mlRxFeH7+HKiqVVU5XTuWbu/srFsXF184/5Zx/Mxqo/iW6xssNGL+jz8n8ulX9BXRtKvLS9K6fcJHKsksU0ufMUHJXPoeld74i134eX99Ld2ji1SYK3k26YWM45GOn5V1f2cqSTUG/xM55jOTstDzy18Q+NYUK281tZoecCNM/yNQP4o8WG9W2n1uZnbn93gY/SukudS8IDJh1Cfd2DJxXML/Zf9oSXTaqhBJwPKauyjh6jWzRg6zluaNnqXjaS0NwddZF3lQrHOcd+lKfif4y0tmgu0sdQiXr59sjg/oDUq614eW0SFrt2KsWOIyAaibWfDfOZHP1jNP6tVtb/Il1HfVEsHxG8M6k4OueBtN80f8vFj+4dfcf8A66t3vhPwD49KvpPiefSL0jAg1BcqT6bv/r1z2qS+Hb+JVt5jBIDksIScis42+ktDt+2YkHRxCwx+FH1XmjyzX3FKb3Q/xJ8IPFfhZHnksl1CzxlbizPmKR64HP6VzAkMaBXBUgdD/Ku107xPq3hoRf2Nrs8qH70RUhB+B4rUvPEPh3xVEP8AhJdBCXY/5fLBhG7fUdDXn4jK5LWDudFOrbdHmy6pGowYQaK7/wD4Rj4cP8wuNYQH+ElTiiuT+zanYv2iPpq20fTuB9jgH/bMVow6Hpxxmxt/+/Yrnx4nUcLbsfqas2/iqQDPkAexaun2U+wlJdzo49B0w8Gwtj9YxVhPDej450yz/wC/S/4Vjw+LBxvtwPo+avx+K7MryrZ9BUulLsHP5mlF4e0deRptmP8Atkv+FX4YrO1XbGkMQ9FAArn38Z2kas3knCjJLEAAVyup/E6G9GLb93B/fCfe98kdKqGHbdnoc+IxkKMbyZ6Tcatp9km+e5iQemck/lXO6t8VNA0pTuM8zdljT/E15pqmsSSqztIcH0PJ/GuH1W+Zy+OAa6Hh6cFqeLPNq03amrI5fXrHR5/GGpeItNtbm1inmdlgmkDjJJ3dhwT0HOKht4rYX32sIPPdfL4PUcdqfqRJQrkcnPNW9D8F6vrNnd6hbRItvYp5pmnJVWxztHqeDXhV1KM2j7DDYmlLDqpfTqdR4YXT7jUdHvNM0MpNpc3n3t6vKud4G3k84GeAD34716OfijMCwW1iGDj7xq14dEzeF2hutHSxlgdTNEj7kKsoKuv+yf8AGsLUfCtpdTNLHMY8nJAFTPLPrFNT6mOJxUaj9x6I2IviNeXDBhBBz2Oa5jxT8dLqxE+maVbwG+XKvMPmWE45HPBb/PPSs3xLBYeE9GudVn1TPkL8kIXl27CvGhf3Op6LfagG/eLOLkxBc7QSQTn3449qeBySl7X97HboYxqTS5jTvfEFzrT6g13O1xdrA0omeU787hnP4E1jrI8/h2fy9kSwyRSFk7ZU85PuBVfSLK4m1S7iRCA9tKBuYA/cJHX6VmXseoCxSzNwsds4DGMOMMQTjP619Eqv+zOMo2WwSj+9TTNe31i/OFuIA0gUEgjG5SMg/iCOa3tH8aajc+IfD1peSfZtLsLtJlijHC4/njJ/M1hWMpivBZ3EmVWCN7dwc4QjO3PsTitLQ7CO711Jmb92oOG68c8fXqfwrwfYOM22tj1I1bxVnudn4x1FdH8ZG509mFrqaK0RVztY5IXH/bRSP91xXQaL4hsvE7QaBeSlpDp7XUc5yHDCQqQyk8kLg49jXnviEC7sLfS5VmeXbItrIMAqyHKqPqNo+tZ1z4otofEWi+IrQyrcpbp9pjYfJ5mSGIx65yR6k16tSEpLml1S+8441Ip27MyfFc15oWs3NnqE7CdHxmMYVx2I9qpWGoxXrhPtMm7+67GvW/HeiaFrviywF1M0Ud9bpcQyoBznIK59zj6E+5rmNb+F1nLo326wle0v0LYt5nB3kE4Cn1IGa7YZhVik0lY46lCPM1c525W0tSFnkwxGQDVaSfT3G0lCPeoNM/4mP7+5wzxDy2B9RWsIYgOIkA9gK3eZOWqWhMcN5lBZLQDCyoo9hUitaD/l6X6Vc2oP4VH4U3CkfdX8qX1+RX1ZdyqFtPNEhvAR/dK5Bp4/s/GTMlTHaP4AfwpAUwPkH5Uvrr7D9h5kDXGmJ1nXj0FMW60+VwiTrk+oq0RG3/LNfyqvPYW9whGwK3ZlGKSxf90XsH3Fns0ADqFOOhBqrlCdu+Mn2NZ0VldalqC6Zp7SOSdrBT1NdTc/B2+s4YDLfWi3Nw2yOLecs2M4z06UnmUV8MLkexfcyRCSPQVA2qWdoShdHI6jGf1rOvotR0e6fTL1XRlbYyP1U1Uk0+YOVRC/POBVSr068LJFU3OlLmT1Opt/EOjiFQ9ujN3J4orlhp1yRnYR7GivP+oUvP72eks3r9o/+Ao+topG9SPerUfIzuzW3F4d09jhkY/8CNaFv4Z0tB/qST7sazWJSOH2TObVwOAx/Op4m7Z4rqF0TTEAxbgn3q1FpVioGLaMfWqeLXYSos888SXa2+mvAQWa4GzZ6r3/AA7fjXA3uosD5asBjqB0rY8feJBfalOligSNCY1I9B/jXn95dSRJzkkYJ+nenKpbU+cxMvbVWui0Opsr6WWOBpHDJKzRAZ6FQD/Iir1poNxrt5HbafE00knbHC+pPoK4nQNU+1GGOSVo4FkOMDJO7AYj6hQK+kvDsmk6JoP/ABL0hilkUFTK2Glb3b9fSuWriLIUaDvypHC3vwq0/S2gllka/uP+WkCNhVP8/wA+tdP4qltrD4aL9j8uNZXETKOoLKV2nvkZ/SuS1z4g/wBoarf2UzmwvLF+F5KXUJx8wxnBGc1BqHiybxYmg+FjEBPJeiZzuz90kZ91w2c+1csbyknI66tGVOk9D2Lw3qEF3olwJY032kf2Fsf8tAsakZ/76NeXtr+odVtsf8ANa3w91K51bUpoog32EXDymQniTBAyPb5V/LHrXphs7YLkRoMDP3RW9Kq1ojuy69SneXQ+PfjX4jk1K9stHzGhQebKuMfMeAD+GfzrkTe3GiWsPlEoHlIlXs6qoGD6jlvzqLxRf3fiPxvqd86l55rl9iqOM7sKB+lVdcuoz9ltE+dbT90vGQ7dST7ZJx7V0c1k5bN6I9DT5GhpTJb+KFjZzIrh40dm+8GU4/QiqEzLLFE2z7oKnn3J/rTdNKLfWUm15DvjcnfgZJBq5dpbW8s0AilJjuJF++OnGO3tWvPUnRkr9RJRU4sh1oNJFps0WEcWnykd9rMCPyq3BcS6Peq0chZYvLbOO5Q5/U4pwlgH9jNJahlRZSVZzyA7GqjTbpJ8pDwOM5bHI9frU1aUpPV7xKhNR2XU6bUL439haTqzl4r04CdeVU4H/fNc3qssebaa6idZ3MqTxMMBWBBJH4tnHrXU6YUtNKs5nKKr3Ak+UAbgE6qR3BPIridUZZ/n3s873E8gDHqgC/zwfyrCd7Q5Xqkatq8rrc7m3e88TeCIZMh73QJjEqqcb7dhnA+hHH4V0ul+NtP1DRzqGqQQb9Pi2vNkEmTHy4B5yw54964nwnc/adOfTIiyefD5dwyHlcsDn/vkAd+fpXoukfBLQNZ0wR2+vNCsir5qTuBkrkg5/E1qqyi7Lr+ZnKm5Rv2PFdBGrarqF1HpWny3LSybiEQkJn1Paujl8EeOXOf7MkRfYYrvE+EUHh+8EWiavqkskqhi1hIVVh2yx4/OtuL4aeKHgdm17xJb7RuGLqOYN7YVs/oaIxrJXitCNFpJ6+p5C/g7xtBw2lO31qFtA8Zx4B0dvThc/wBa9ztfhT42uYFns/Gt68TDgs3I9iGGR9DT/wDhVXxIiOU8WzE+4Q/0pfWKy0ugdOPVM8BuLDxTaOUn05kYdf3eagca9H9+2K/9sq+gn+G/xRDAjxIkhH96CI/0preAviqOup6fJ/v2kX+FV9brdxezj2Z8/wAX9sM4BikwfSE1e8q4QFmguC2P+eZFe2SeAvimzA+bozY9bVBUT+CfipESRb+H3+tuv+NTLFVHoyowS2PLfhBaRxeILiHUISss9rI0SuDl/XHfOM16fAlmmn2a26tFLyLZLjO5fl6Y69M8dcVia78L/iVrE1rc/ZNJtbm0YtHLajym+mfSrV34V+K81snnabo8k0HzJcZHmA4xke+KdGtBRtNamU4S5vdPN/iost3rkEbiF9Q+zqJRbg4LZOMd84xWQula7Oo8qymUEdSu3+degaF4Q8T6JdXF5q3hqPVLuZ9xnllYMv0IFdPGbJos33ha9hmzyIp8r+ZxWXtJptxRokmtWeM/8Ifr7/MVAz2MgzRXsDf2Jk50XUgfTzf/AK9FP21XsHLDue0JKP7xFTafIzM6yMcg8HPBFV0bdgEH8quwoQB+7x/wGsTRGjEgIyMfnXN/EfxCPD/h10hfF3d5ijx1A/iP5fzrejT2cfTivHvixeTXfiQ2m5sQIqICfUZP8/0qJysjWnHmkkcJLcGEs3mYycsDyDXP6xqIuGFqiM27/WFew9K0PF2kan4fvIILpQpuYhNGVYNlTkZH5VQ02y2ku5Bc8ms6M5tWvoebmioKekffLFlCNix24HH3UUYrs9Z+IN1p2gW1i2z7ekIWaNiD5bHPB75xgn8BWHJbvpFnYXpRBNes3kbuwHG76ljgfQmsPxRo0VnqYa7tVilaBZHyTyCuSx/zzWrXM7HDh1yr2n3GV/aFzHbyXBmYzocmV+mMDj8j0rqvDN7qNlHc67dI0V3NEbO1H/PNSvzsPfaQPbcPSuR0rTrnxJqUEUMb/Z0fbFHjqxPH1JP1r2H4r6PD4Oh0LTlZS6WA8wjq8hY7m/E/yqKs+WN0bwoyxDdJOy6nrfwstrODwzavHs3tEN2Oo9vp/jXZgRtwRkdCDXkvwH1KS+0qa1dTmHOM9xkV6uYiBzgUUZ80b2PThhVhl7OLueGftB6FYaYNHfSdOtbVxHPgwRBDuO0bjgckDP518w6wksWQ0ckTAnJYYzn0r7B+PWmyS6DYaguGFrcFHx2Vx/iB+dfO3iTSk1CynYKN4TI4qnWlfkexuqSlC63OJ06F5rFJERi6ylePYA1sa1p1xFqV5+6YbmST8xn+orGs43isI5ASVLOTjp0UVsaxcJNIkgTPm2kTE7s8jaD+oNd0KcOSSl2ucrk7q3cZdWc72emsEZeZl5H0J/nUttpTSJLK53J5TBvmCkEFT79s/lVUyrLpAXBLw3QwN3Z1wf1UU/SLxtLu/tRjU27DypUJyMHAyfzP5VEnTsnfoUubmfqdHBctpHh62t5SJo55pWizg7cqFP8Aj+FZngrw/D468YWGmTyyW8N1MI1eNASidOnTtiuo0Xw8001pa3yF40jMkcnZgXboPpWz8LfDkFt4z08Ws2yWO5jIAH3hkHr9AR+NZWcYq3ka25nZlu/+D3iLwNNLHb2TajYgkrcWw3Ej1ZeoP6e9UNKsr251FIN08EbcSkgjaO9fVxZwTxnHqK82+Our3eieF7K/hg3wpfIs4A52srAH88VNGnH2kefa4TqyUHy7nNWNytpb/ZbDy44osKAWOck9+P51q6drDpIP3mT3IOa4PT9esjZNJFsV2iMhVsgkMfXt34qXTNUhKBbaRCoOMKelfawxEGuVbHzc6cr3e57X4c1aIyYbaTKQGbv7ZrqSC3QV4no+vxWs8XmzrGGYINzckk449a9lJnUjJU+vavm8zjBVFKPU9bBSlytSJdrDqBTWBx2qFrmcPtwOelHmXJJ+WMj6mvNO0cyHH/16iYZzwSKVzc8YEYGOetIzsuOAWpgQyoDztqrKAM/LViSRs8qv4CoHY45P6UWAqSp6LmqM0aknKL+Iq/ImRyxqpIRg5zmgkzzbxk/6mP8AIUU9iuTz+lFAFmF8EDBP0q9BcHJzWZED2cflVuE+ufrQCNWOcMAcg/jXh3xBv4bjxhPcR5aIlQD64AGf0rv/AIkeIW8M+Cr++idxOyiGLA5LMcfyyfwr598K6k2oWDm4yWhnIyW3fKeevfkGs60bwua0W1USPRvihpUmq6f4cuYQHlWKRDxngbT2+prjLjS5rWNFmVV3g7HDAqfXDDg12vjfxXY6XYaE0XkEiMyRTu20RSqRxyOh7g9QcVyZ8ZaPF/pUEUMUkr5ntLa8jlgY/wB4JLkEexwR0BI5rPC3jTSPKzrD1JV3Up6pnS2unaXqfhKbWdYskmg0nZbwskrHY2Ccso/hLHr/ALXtXneoyXuuO+oaguI5zjfghcKAAiDsoGPfkV6xo/jfw0mnGIWdr5UhE0sUvloHYfd4Xhsc8CuX8Q/EDQNY1PCaYfkbmXeAqfNk4Udz/QelaxTvax5kIVnHlijb+AvhpdS1hdYFuVs7A7EJT5d2DgA/3hwfbNWvjJLFq3jVgfmSzhSDB6E8sf8A0KvX/A40FvDlp/wj0AisNuVTGGBPXd7mvCvGwnn8daxEASVuWIHoM8fpiprLSzPoMBh1SSieh/Bi38mG6kdQqhcA9O//ANavT96OMg8VyHw205dP0EMy5MhGD7Af4k11wlUAcD2opK0TqrO82ZviPw/a+JdEu9JnyEuI9ocDJRuoP4ECvlrUNMm0u/utMvI9s9u7ROD0JHGR9a+uvOUAZXH414f8dtCjt9VsddhjIW6UwzMo43r90n3I4/4DSqL7Q6MteU+Yb2GTSZmgBKnzJQB/s8Y/lVmzKT2yyyRhzh4wAduABu6fia3fHOhSPs1SFGKqpWTYMkDsfpXNmO4j060RukjSuFCFTggDcT6cH8jXdQlfXdWOarHldttS1am2kS4jMCrsVZOGOchh/iat27LbPLDJbqtvMjRysRuKcEhvwIFZWlxwul5GXMLvbtt3KSCQQewPp1rd0HWWthH51imoQupilQf8tFPBHsR60KXuRly90Fryauei28ep2Wn2B8hnvIbWPbIo3B8MxGO2CKn8JSXPhv4iaTNe2csVg96YzOEJSNW+5luwyfyqFPFY0zTRZNot5HaQxkRzyzru2noq4zuGfQevIrpPCN/NfajY6esohtriZF8lFDockcqTkkdQTx09aEueDbd7W+Ro9JJL/hz6BMbY+VxntWV4l8O23inQL3RtROYrpNu9RyjZyrD3BAP4VqMcZw36Ugb+9k/hXMtBHyV4y0HUfA8ElhrMTJLHgR3SxZS4jBzlXJwc8cdQT0ryoXckt28weQrGD5YJJ5PA/nn8K/QW5tLfUIGt7q2iuITw0cqBlb6g8Vl2fgnwzYTiez8N6Rbyq24SRWcasD7EDitJVZS0uZ+yR4P+z58IdRur+38Ua9bPbWdufMtYZhh5n7Ng8hR156/SvpMxxqSdi57mq72qNlSXUnqVOD+lCQFFAWeUfUg5rNstKxL5ajnbSsgx/gajVXU/fVl9zjFAkXB3Arj1NNDFPAximMpPfApPPt2BxKn/AH10pjTW4zmRfrupiI5Ov3s1WkYDvTpru2/56xf99Cqc13bD5vPgx7sKLMNB0koHOc1RmmT8KSbUbJRhrq2H/AxVCbV9OUc3tsP+Biiz7CbQ55E3HGMUVQOu6YSf9Ptv++qKfK+wro0EjDxldu0twSDg1ZhSS0RQjAqDzu5qvC4wDmrqnIwP1qSkYnxD0d/FvgTUrFB+9QCVVHJJQ7sfiAR+NfOWgnyL64tAu1TECB9D/wDXNfVdgQ0pCgOpXa4zjmvnKTQY9P8AFermRPKSzuHhjTdkck9z1wP5irSThJMcU/aRaNtJZJ9GSNjnYSuG+61czeaDJcMStjpLf70Of1rqIbuxaCTTJZNs0qGSM+hA4b8+PzrmdevrXTtPmurqWaYRjGwHG9ugAA7e9XQiuX0DE6SOL1qF9OuzHtsomXtApA59ear2U/zht7F+2xCf/rVz899Nd3UlwWVC7E4A4X2FSxSu5w95j2LkURkrnM7s92+FPjrUND1IDdN5BGHRxhXH5V0jldd8X6hqcAIS4uiE9SM4/pXl/hS50bTfs0OjudR1GZt09xKqgQIOygkn6mvY/CWuaNqCA3NqEubYi4ypwJgpzx+A6VjXl7R2SO7DQ5Vds9l06zSxsILZBxGgX8e9T7G7AD8aZa3CXttHc27h45F3IR3FTbWzknrStbQzeuozy2OMnNcR8Zod3gWclFJWeI5x935uv9PxruQMdGyKyvE+hp4j0C+0x22/aYiqseiP1U/gQDSaurDi7O58zWyBz5b8qwPXvXGeIY7retyj4spoESBTHuVQOSufb/2auu1Kw1Dwpq6W2q28kNxBKpKk5DA9CD0Iz3rV0rw+kTXFgkjSWUkjFbdjuTqSCM+1XhJ1FJqHzNMQoOKcjy6yt4jpTwXTCD7dOIkuV5CovLZHXGSPyq9pGh6lpjS/agjWkgAR43DKy44Ye1dH4s8EGztBeWkjRpFuhW3eNtqZ5znHuevtWXoEZ/sp40y0mCp9MmujEyhKKpLoc1O6bmx+qk2Olra4jjmA+8OAoPr7n9Px49A+BtnaR6npct9mKdS6QZY87hu3EdOCePzrzm60y8mshak+a2cFjxgenvXoPgWFrCeyEhIaDbh/pgAflRT1jZKzW/mOb1vf/gHul1pviZLh1j1KJ4wflJABI/Kqr6f4qYn/AE6PB9x/hXU20/n2kNxuyHUUMQOM5rP2zWll9wvZp9Tlf7I8UsDnUlB/3v8A61IdD8TkDOrj8zXVtPDHgvKq/wC8wqFr+wTLNdxDH+2OKftpdEvuD2a7nLv4Z12T/W6yfzaon8G6wwBGsZHoWaujl1vT0XcsjyDtsjZv5CqjeLLFGOyC8c+gt2pqrUey/AThEwz4J1ggg6mp/wCBNTW8C6h1Oorn6mtl/F+7mPSL9/8Atliom8T37AtF4fuiP9o4q/aVf6sLlgYb/D65JJbUAGP8S5qIeA71CRLdJIuOCDgmtiXxPrQ6eH5Mf73/ANaqsni3WVXnw/Lg+5P9KOer3/IOWBnnwNDwbi7eLPqP605/h/YlT/pc/wCGKWbxfqU37ttAkbP8JDH+lU7jxNrobdb6NLETxgoxH5YqXKt3C1PsSN4C0/OGnuCfqP8ACqr+B9KT7xmbJ/v4ok8ReKHIP9jbc99p/wDrVSm1HxbJytnGgPOdoH8zS5qj+0DUexM3g3SASPKk/wC+zRWcbvxdk/ux/wB8rRS9/wDmJ07HXwsuByc1a3qsZcqeB2rLhlHA6fjWhA2B93j3Nc5uXtPMTP2Vtowv+FeNfFWzXTPE+oFY8G5jW5QJ/EcYOffKmvYYgm4OY1LDgHHQV5T8fNKa4/sq9tDMLuXfbFF6FByD7EbjzTinsilLldzzvTZ7X/hI5ruV3FrfWoSGQDIR1QDacdOf516h8L/DGl67qOpR6jZwXNibTY8Uq5U7mH6/Kea8w0bwhexMJSYfMZhuLuSc+pOOa95+EmlyafDqYl2NIWiG5TkYwxH86392NNpO7M5c0pXa0PGfir+z1e+FTPrPhlZNQ0cZZ4fvTWo/9mUevUd/WvIBGu8Ky/pX6FLvH+eteYePP2f/AA54vea/00HR9TkJZniX91K3+0nb6rj8amnUS0ZEqb3R80aBPBpcEpgEckshG51OGCj+H867Cx1ouq7UkRjjc/t7V1Pgj9lfWIdTlufEmtQW1sGbbDZHe0voSWACj8CfpWX4n8G3Hg/W5dLlkSQKA8ci/wAaHoSOx46Vy1m+a51UH7vKe3fDDxRZXVgmnxKyMgyA7lifzr0DzDjp+lfKnhvWptFv/NiYh8YAFfTmjSyXulWdzOpSWWJXZT2JFOE29yqsErNF3zMdFIH6UhuCf4SKURgnqwFAXHft3qzE82+Nvh621jRIb54AJYJBG0i4z5bdj7Z/nXnej7LQQ+ShZV4AXv8AjmvoHW9KXWNHurCVVInjKj2OOD+BxXz9Ek9jcujoMxuVeM9QQcGu3CW1VtTGs3ZHZX2hx6hZOzKZAoGI5B0Pv3z2/GvJH0Obwl4gu9LcnAOVJHyuGAZT+Rr2bw9INQtvIU4RuXPel8c+EP7c8EWWpRQ41TTLcLIVHMqIMMPfGMj/AOvWdRck9So+8jyN/Lt2C4Ekp6KP61fsJnhuopWYlgwPB4H0FULW3AG5QCTzmrkYZCNwxjpW8bvczaSPofwxfrqGhwLn548Yx9P/ANVaZh3dHYe4615l4L190uIYx91skj3O1QK9QJQcE9fQ1x1IOLNoyuQy2CyjEgLj3ANUJtCs1cFLG3fJ+bcvNaRc5xkUCZjwSpPtWetiyLy4IECYEQA6dvwqRYIwwdVOfbNG7zFIIDA8EEVEY5Ex5J2rnlDyP/rUtQJjEhJOBz1pPKUE4QflVaHUkldoXBimXqjcZ+nrUrSkdc49PWmIHxjkD2yKiLAHGAPwpXlz3J9qryPk7h1HXnpQASv15HNVJJCMjk09znPQVVlbOeQcd6YMgmJ5qhM/UYPpirEzc5349BWfNJ05z+NAiN5QGPFFV2Y5PJ/OikAQSYOBgmtK2c5OSP51jWspJANaFvKo4yMe9AjXhkJwCPyrhfije29zLYWowZrffI3qmQB+taXivxUNAsNkBzeTZEY6hR/eryi91JyJLiaRpJGOSzNyaT21LijTt9Rt7fZFOCVc4yo6e9eu/D7RZdMsX1CeaVri+RAULfIiIW2kD1IbJP09K8w+HfgubxLfx6vqCvFpkJyqnjzj6D29690TYVxgYHAA44pRuzSbVrFxLnHPGKlWTe2dwx6VRIXA5XPqKUzpGmHdfruxVWZmaDzLGheRsKoLE56CvmbxxrT65r19qBY4d/k9lHAH5CvbfFmsxWXh7UGSVWfyii7T1zx/Wvn26IcSnPbNY1fM1pI6L4U+F/8AhJPEcb3OBawHzHB6vjtX0mjR7RyAAOPavEPhFdW+k29xeXL7N/7uMDv6mu+m8dafGCF8xj7A1pQpTcb2JrTV7XOxWQE/eGKN2RwwyK4KTx8p4iSTnoTgVRk8cXj8Km0dM11LDTfQ53VielbxkfN7V4d44sZtP8XX6743Sd/PA29m5/MHIrck8V37kjcADXn/AIh1ae41a5mAkaYsFLu2QuBjgfStqdKVJ8zIc1PRHa+CrsxXIQgFHOPoa9Zjnt4gbfzVVo0VmUHoGzj+Rr520vUHs0U3ILWsxKO4PMZ/vD6Guos9d1L7Ognl3zBdkjk5L44B9+Kia9tUsik+SOp3fi3wdpHiDS7iG2Sxtb91DRXKqqkMDnBI7Hp+NeJ6nZX2g3EllfblmTGVYhgQehB9K7Ua3ekfLIF+mK5fxXHcX8iXc0x2IArDAzn3pypSprmuEZqbsHhnXxZ6hD5jqq7xyxwB/nNe3aNr9vcWhE0bQvE7RlW43AHhge4I5r5oXAkYgZX3r0fEVnpdhHbnKPHvLKDhicetTH96+Vg/c1PXf7W0/dzOij/eFM/tXTyABdxDv94V479plAwOB2ofVvKBEk6L/wACH5da0+pruT7fyPXpNasUQlboNz/DUY8SWSkD7QvPZjjP514++pg5G+Q/7oJqOTUCTgRyOfUg/wBaPqi7g6/kev3PiHTJYik00DezHn8KzD4ntbMER36soGBuOR/jXlkl3Mx+W2kI9cinLLMy82NwxyOARR9Vj3D2z7Hoc/xGt4GCvb7iW27lbg1Vm+IsSt8tofzzXDzWM+pDDaReKRyDuNLbabfACH+z5x/daVsfgSe9SqdNOzG5y6HXH4jISc2RP41BL8QomziwlIrAk0bVYsf8S9eTxmQf41SuINUjyptIlwcZLf8A16OSl0/MXNI3pvH6E4GnS/XpWZc+P22/LpzA/wC0/wD9asSaHU2PzQQj3qhMl2hO/wAnj/ao5KYOUjabx1dkkiyTB/2jRXN/6X2KgfSilyQ7E3kehQa0gIG1qux6wkh/1T4P0zXJW9jcIQePYntVwwXFvHJO9wVWJCxCgdqw5Y9zZNmB4v1P7brMpQnbEBGMnpgc/rWTpFhJruoraxoXA5bsMVSv7o72Yks7kkn1Jr0Dwd4Xew09LiaZ4Li4Ac7WwQvYVild2ZreyudRaXeu28KQW9pbxRou1QCOnp1q4lx4mkIGbdM44yKz0sgmCb+4LehlNSx/ZgQTdbj7zN/jXWmui/Aws+rL4tPE0gLNe2yk8Ebv/rUn9k6y7HztUhHrjJz+lV0+xL96ZWyef3rf408LpB4PlOD0+dv8afM+34Bb+rmT4u0q60/QbmaW9SYDaMDvzXl0CvPOYgMs5A+vtXpPjqaxj0ZYraGJZJJR9z0xXNeBtIN5rscjqvlQ5kYHoew/U1yV/emdFH3Ym3ZItjZxwLgeWOfc96nWYkZ2jnnp/Wusa1gC58uzHOceWM5o8q1wMzW6j0VAP/1V6UKyilFI5JU23ds5XduY/Jgn7uKt2Njc3gIQRrj+JjgE5rYma1jUl7tFTHOOM/lVK4lswmTdzg9gYjkn2HX9KbxCEqJEdIlyMzwZzjAYnNcr4tsmsrmFmKnzFILAdSD/APqrpBHK7MFeQj/bVlBGetZniawmm01ixd2gO8cccdcHOTxUyqOSsNQszM8PmKexmhcB9r9PUHFaunAR7o7iTZAoxHj5iD/drlfDl8lvq/lSPtjlypb3rtILYRF5Un3IpyQp4Irni7TuaNXjYCbIL8rXDnuVAFZuvSRHSZwlvMm0A7nIPf2rXeZP7qPz2NUdXlT+y7wLA0jLC5CDoTjpXVJNxabMlZM88V+xr0Lw/LHfeH7H7XJKvlGSJSpxlQc/1rz+1eDUJIVt5I9kjBfMLZC59a7LRpPs2nCwE8bGCRyCo5IJHJ/KuSj8RtPY120rTpmLbZHHo2TzUkGlWEJJWEIPUIBVT7ZJF1dj9B1pkl/Iw53kDtmuxxZinE1WSwjTDRkk9jxTfPsAD/o8eR6jNY3mtI248gYGSaOD1Zc59anlvuw5vI2WvIOB5aL64FSxahYRMCYHbvjtWCXTbzn8qYzkcZYjHY0OncaqHXjVbdo2jSDaCD39vrVZ5YWiXjG3gHJz+HNcnJdzIvyk4z61E+oXPI8wisXhrl+1N241uewZdyb4wSPlDYP4Z4NVLrWnnXciIAwznrmsW4upJ4jHKxZGHPNZEs81u4VmLx4wr9x7EUlQS3E6rZvT3LSKwkkjQZORis+b7GMF7ktjsEzVOWcOgfdwfT0qlKyqCCc++KvkSI52aRuLME/vyf8AgIorHLLn7xopciFzM1k8SznHYdKW98TSTWM0ec7xt6dM0UVnOKUWy4ydzC0qNZNTSWVQ8cJD7T3Pau9Pia9mAHlJt9KKKVGKauy5t3GHVLi4B3KqjPrSm8kGAVB4PftRRXTFGbFBlBEm7agBJ5zmiG83qXBDKP4kBGPwNFFEnYErmdq94t2Y1V2dFXI7cn/9VWdAmntrHUfJCfuzE5YnB2kkHnHqRRRXC3ed/M60vcsX4bu7uGLi4AAAyoXI/M8/pV6COYNummLY/hB4I/Kiiu1o50i5DLbWx2lmVehHJqd9VsosYEhOOuOtFFEIpik7bFeTW7Z/mW3ckccmqz6kk52LEBwcqSTxRRWvIkRzNnHSaKLTXIxGSyFvNUE9VzyP6VqR2ssTTSRzNGEQ5Qcgg8YoorncU5M1T0NRtMMsaybyu4BxtYjrz/WoxZYkUfa5gG+Ugc0UVsm2ZtJHmXj3wPNoFw/iHTXUQl8yIcAoxPBx0I/lWn8PfEUkOn/ZrnfdR7xK64AZSc5+bPfr3oorka5amhstYHbzNKNs0UIktpEDxyb8Myn2xxUTzlULtC4APYj/ABoorv6HM1rYrRakjsVWN/xxz+tLJqSRkggoMgA4ziiik9A5SA6zAQdzkYJX7p64pg1W3ckLKxOQCACMUUVCk72HYZJqECuVLk468VWn1KzBG7d9AKKKG9RbFV9Vtn3FEk4HTioHvBNGcQEhhzkgZooqU73GUzJJDzGmFHG3PWoxKJl4JHJHNFFRKTVh2uREDP3qKKKLhY//2Q==`
html: "
Thank you "
QUESTION
I am trying to get a client token from the Mojang Authentication API, which can be found here https://wiki.vg/Authentication. However, whenever I try to make a request, I get the following response:
{error: 'ForbiddenOperationException', errorMessage: 'Forbidden'}
The API indicates this is because my credentials are invalid but the errorMessage that I am getting does not match any of their examples. I tried doing the same request through python's Requests module, and it worked well, which leads me to believe I am not sending my https request properly. I am aware there is probably something very basic I am overlooking, but I would appreciate it if someone tells me what I am doing wrong.
Here is my code:
Python Code that works:
...ANSWER
Answered 2021-Jun-02 at 00:45The problem is that you're sending your credentials as HTTP headers directly instead of as POST data. Try this instead:
QUESTION
$SEL = Select-String -Path D:\PS\input.txt -Pattern "SyncIDE=1" | select-object -ExpandProperty Line
$file= 'D:\PS\input.txt'
$find= Select-String -Path D:\PS\input.txt -Pattern "SyncIDE=1" | select-object -ExpandProperty Line
if ($SEL -ne $null)
{
$CharArray =$SEL.Split("=")
$CharArray[1] += 1
$final= write-host "$($Chararray[0])=$($charArray[1])"
echo $final
ECHO $find
(Get-Content -path D:\PS\input.txt) -replace $find,'IDE=11' | Set-Content -Path D:\PS\output.txt
}
else
{
echo Not Contains String
}
...ANSWER
Answered 2021-May-28 at 09:13So, in your code there are some misbehavings with what you're saying you are trying to achieve.
First - in code you are trying to find SyncIDE=1
(in question you are saying you're looking for SyncIDE=0
).
Then - you said you want to add a prefix, yet in code you are adding a suffix ($CharArray[1] += 1
).
Get-Content
returns an array of strings, so you have to act accordingly in your script - preferably iterate through it. Also - remember that -replace
uses regex.
I refactored your code and came up with something like this:
QUESTION
I am currently trying out linstor
in my lab. I am trying to setup a separation of compute
and storage
node. Storage node that runs linstor whereas Compute node is running Docker Swarm or K8s. I have setup 1 linstor node and 1 docker swarm node in this testing. Linstor node is configured successfully.
DRBD 9.1.2
ANSWER
Answered 2021-May-28 at 07:49LINSTOR manages storage in a cluster of nodes replicating disk space inside a LVM or ZFS volume (or bare partition I'd say) by using DRDB (Distributed Replicated Block Device) to replicate data across the nodes, as per the official docs:
So I'd say yes, you really need to have the driver on every node on which you want to use the driver (I did see Docker's storage plugin try to mount the DRBD volume locally)
However, you do not necessarily need to have the storage space itself on the compute node, since you can mount a diskless DRBD resource from volumes that are replicated on separate nodes so I'd say your idea should work, unless there is some bug in the driver itself I didn't discover yet: your compute node(s) needs to be registered as being a diskless node for all the required pools (I didn't try this but remember reading it's not only possible but recommended for some types of data migrations).
Of course if you don't have more than 1 storage nodes you don't gain much from using LINSTOR/drbd (node or disk failure will leave you diskless). My use case for it was to have replicated storage across different servers in different datacenters, so that the next time one burns to a crisp 😅 I can have my data and containers running after minutes instead of several days...
QUESTION
We're searching a way to connect scalars (as an output) to vector entries (as an input).
In the "Nonlinear Circuit Analysis" example, there is a workaround in the class Node
which loops over the number of scalars and adds each scalar as a new input. In the class Circuit
, the added inputs are then accessed by their "indices" (e.g. 'I_in:0'
).
In our case, this loop must be integrated by a new Component, which solely loops the new inputs. This is why we'd like to avoid loops and directly use vector and matrix operations. In terms of the Circuit example, a way to achieve this would be to use some kind of target indices (see tgt_indices
), which are not implemented (yet 😊).
In this case both classes would look like this:
ANSWER
Answered 2021-May-27 at 12:36You are correct that there is currently no tgt_indices
like feature in OpenMDAO. Though it is technically feasible, it does present some API design and internal practical challenges. If you feel strongly about the need/value for this feature, you could consider submitting a POEM describing your proposed API for the dev-team to consider. You have a start on it with your provided example, but you'd need to think through details such as the following:
- what happens if a user gives both
src_indices
andtgt_indices
? - What do error msgs look like if there are overlapping
tgt_indices
- How does the api extend to the
promotes
function.
In the meantime you'll either need to use a MuxComponent, or write your own version of that component that would take in array inputs and push them into the combined matrix. Its slightly inefficient to add a component like this, but in the grand scheme of things it should not be too bad (as long as you take the time to define analytic derivatives for it. It would be expensive to CS/FD this component).
QUESTION
can i remove vg.First().Voucher ? and replace the beter code? what is the optimal and best practice? is convertable this code to another method? like chain method?
...ANSWER
Answered 2021-May-11 at 21:17I'd certainly be looking at the SQL query generated. At face value I see a few warning flags that it may not be composing a query but possibly pre-executing to in-memory processing which would be inefficient. It would firstly depend on what these .TableNoTracking
methods/properties return, and the use of .AsEnumerable
on the eager load joins.
Firstly, when projecting with Select
, eager load joins (.Include
) are not necessary. The projections will take care of the joins for you, provided it is projecting down to SQL. If you take out the .Include().AsEnumerable()
calls and your query still works then it is likely projecting down to SQL. If it is no longer working then it's processing in memory and not efficiently.
Edit: Nope, the inner projection won't resolve: Regarding the .Voucher
, your final projection is using 2 fields from this entity, so it stands you could replace this in the initial projection:
QUESTION
This is my SQL query and I tested it in linqpad, and it worked, but it doesn't work in EF Core 3.1:
...ANSWER
Answered 2021-May-10 at 16:59First, don't use methods like FirstOrDefault()
on GroupBy
result - they are not translatable. Use only key(s) and aggregate functions (because that's what SQL GROUP BY
operator supports).
Second, use temporary projection (Select
) for GroupBy
result containing the key/aggregates needed, then join it to another entities (tables) to get the additional info needed for the final projection.
e.g.
QUESTION
I am trying to define a toy probabilistic programming language to test various inference algorithms and their effectiveness. I followed this tutorial to create a Scheme like language with a basic structure. Now I want to use the monad-bayes library to add the probabilistic backend. My end goal is to support sampling from and observing from distributions. This is the definition of my expressions
...ANSWER
Answered 2021-May-04 at 22:03A data declaration needs to use concrete types, but MonadSample
is a constraint. It describes behaviors instead of implementations. From hackage, one instance of MonadSample is SamplerIO
which you can use in your data declaration. e.g.
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install vg
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page