dijkstras-algorithm | shortest path algorithm in different languages | Learning library

 by   mburst Java Version: Current License: No License

kandi X-RAY | dijkstras-algorithm Summary

kandi X-RAY | dijkstras-algorithm Summary

dijkstras-algorithm is a Java library typically used in Tutorial, Learning, Example Codes applications. dijkstras-algorithm has no bugs, it has no vulnerabilities and it has low support. However dijkstras-algorithm build file is not available. You can download it from GitHub.

Implementations of Dijkstra’s shortest path algorithm in different languages. Head over to to learn about implementing Dijkstra’s algorithm. You can also learn about unit testing by visiting
Support
    Quality
      Security
        License
          Reuse

            kandi-support Support

              dijkstras-algorithm has a low active ecosystem.
              It has 467 star(s) with 200 fork(s). There are 28 watchers for this library.
              OutlinedDot
              It had no major release in the last 6 months.
              There are 0 open issues and 8 have been closed. On average issues are closed in 73 days. There are 2 open pull requests and 0 closed requests.
              It has a neutral sentiment in the developer community.
              The latest version of dijkstras-algorithm is current.

            kandi-Quality Quality

              dijkstras-algorithm has 0 bugs and 0 code smells.

            kandi-Security Security

              dijkstras-algorithm has no vulnerabilities reported, and its dependent libraries have no vulnerabilities reported.
              dijkstras-algorithm code analysis shows 0 unresolved vulnerabilities.
              There are 0 security hotspots that need review.

            kandi-License License

              dijkstras-algorithm does not have a standard license declared.
              Check the repository for any license declaration and review the terms closely.
              OutlinedDot
              Without a license, all rights are reserved, and you cannot use the library in your applications.

            kandi-Reuse Reuse

              dijkstras-algorithm releases are not available. You will need to build from source code and install.
              dijkstras-algorithm has no build file. You will be need to create the build yourself to build the component from source.
              dijkstras-algorithm saves you 182 person hours of effort in developing the same functionality from scratch.
              It has 449 lines of code, 37 functions and 10 files.
              It has medium code complexity. Code complexity directly impacts maintainability of the code.

            Top functions reviewed by kandi - BETA

            kandi has reviewed dijkstras-algorithm and discovered the below as its top functions. This is intended to give you an instant insight into dijkstras-algorithm implemented functionality, and help decide if they suit your requirements.
            • Entry point for testing purposes
            • Returns the shortest path between two vertices
            • Gets the ID
            • Get the distance
            • Set distance
            • Add a vertex for a character
            • Compares two vertices
            • Creates a hashCode of the class
            • Orders by id
            Get all kandi verified functions for this library.

            dijkstras-algorithm Key Features

            No Key Features are available at this moment for dijkstras-algorithm.

            dijkstras-algorithm Examples and Code Snippets

            No Code Snippets are available at this moment for dijkstras-algorithm.

            Community Discussions

            QUESTION

            Shortest Path with Dijkstra’s Algorithm from a dataframe
            Asked 2022-Feb-01 at 19:36

            I am trying to find shortest path between graph nodes using Dijkstra's Algorithm, by using the code enclosed in the following article:

            https://www.r-bloggers.com/2020/10/finding-the-shortest-path-with-dijkstras-algorithm/

            But this code creates the graph from an edgelist. Instead I would like to create the graph from a dataframe like this:

            ...

            ANSWER

            Answered 2022-Feb-01 at 19:15

            Perhaps you can try this

            Source https://stackoverflow.com/questions/70942564

            QUESTION

            Time complexity for Dijkstra's algorithm with min heap and optimizations
            Asked 2022-Jan-04 at 00:18

            What is the time complexity of this particular implementation of Dijkstra's algorithm?

            I know several answers to this question say O(E log V) when you use a min heap, and so does this article and this article. However, the article here says O(V+ElogE) and it has similar (but not exactly the same) logic as the code below.

            Different implementations of the algorithm can change the time complexity. I'm trying to analyze the complexity of the implementation below, but the optimizations like checking visitedSet and ignoring repeated vertices in minHeap is making me doubt myself.

            Here is the pseudo code:

            ...

            ANSWER

            Answered 2021-Dec-22 at 00:38
            1. Despite the test, this implementation of Dijkstra may put Ω(E) items in the priority queue. This will cost Ω(E log E) with every comparison-based priority queue.

            2. Why not E log V? Well, assuming a connected, simple, nontrivial graph, we have Θ(E log V) = Θ(E log E) since log (V−1) ≤ log E < log V² = 2 log V.

            3. The O(E + V log V)-time implementations of Dijkstra's algorithm depend on a(n amortized) constant-time DecreaseKey operation, avoiding multiple entries for an individual vertex. The implementation in this question will likely be faster in practice on sparse graphs, however.

            Source https://stackoverflow.com/questions/70431085

            QUESTION

            Dijkstra's Algorithm Pseudocode Confusion
            Asked 2021-Nov-08 at 13:53

            I am trying to implement a version of Dijkstra's algorithm for the traveling salesman problem and I found this paper: https://www.researchgate.net/figure/Dijkstras-algorithm-for-many-targets-with-a-pruning-heuristic-An-upper-bound-B-for-d-v_fig2_257428759

            I understand the algorithm but I am confused about what 'free' means in this pseudocode. Can anyone explain it to me?

            i.e. in the following lines:

            if u is free then STOP fl

            if v is free then B = min{c, b} fl

            A Heuristic for Dijkstra's Algorithm with Many Targets (Pseudocode)

            ...

            ANSWER

            Answered 2021-Nov-08 at 13:53

            The paper you link to does not seem to deal with the Traveling Salesman Problem, but with bipartite matchings:

            Both versions of the problem can be solved by solving n,n=max(|A|,|B|), single-source many-targets shortest-path (SSMTSP) problems in a derived graph, see Section 4.

            A free node refers to a node that is not matched with any other node in the bipartite graph. This is stated in section 4 of the linked paper (page label 87), footnote 5:

            A node is free if no edge in M is incident to it.

            M is defined as the matching that needs to be computed on the previous page.

            This algorithm seems to only be useful for this matching problem, which requires that you run it multiple times. It's only an improvement across these multiple runs for bipartite matchings, it is not a standalone algorithm.

            Source https://stackoverflow.com/questions/69884154

            QUESTION

            How to specify tie-breaking logic in boost dijkstra_shortest_paths (dijkstra)
            Asked 2021-Oct-20 at 22:58

            The background for my question is well explained in this SO question Is Dijkstra's algorithm deterministic?

            Concretely, the answer by @Wyck illustrates the use-case I want to solve. Image provided by @Wyck

            My requirement is that boost's dijkstra_shortest_paths (based on the provided graph) when asked to produce a path from 0 to 5, always produces: 0->1->5, because the tie-breaking logic should use the lowest sum of the node IDs.

            ...

            ANSWER

            Answered 2021-Oct-20 at 22:58

            So, for lack of code, here's your sample codified with BGL:

            Live On Coliru

            Source https://stackoverflow.com/questions/69649312

            QUESTION

            Redundant Checks in Python Implementation of Dijkstra's Algorithm
            Asked 2021-Oct-16 at 08:52

            EDIT: I've added some output to highlight what I believe the problem is.

            There are so many versions of Dijkstra's Algorithm out there, and when you are learning it is hard to assess their quality.

            The implementation below appears to be from a reputable source (https://bradfieldcs.com/algos/graphs/dijkstras-algorithm/)

            However, it seems that since this version doesn't keep track of visited nodes, these lines:

            ...

            ANSWER

            Answered 2021-Oct-16 at 08:52

            My understanding is that once a node is processed, it no longer needs to be considered.

            If you mean with "considered" that its distance along the path is calculated, then this is true, but also consider that comparing a distance with the best value so far is not significantly more complex than checking whether a neighbor was already visited. In either case (algorithm), a truly visited node (i.e. a node that has been popped from the heap) will never be pushed unto the heap again.

            Let's look at a variant of the algorithm where (only) the concept of "visited" is used to determine whether a neighbor should be put on the heap. I intentionally have tried to limit code changes, so the differences can be highlighted better:

            Source https://stackoverflow.com/questions/69580769

            QUESTION

            Why do I get an error in NASM when running this StackExchange codereview program?
            Asked 2021-Apr-29 at 02:07

            I believe my question is very simple so I am hoping you can help me:

            From this codereview post, I wanted to run the NASM portion of his / her code (2nd big block of code on that page there). Yet I get an error when running it. Specifically:

            file.asm: error: Can't find valid values for all labels after 1003 passes, giving up.

            file.asm: error: Possible causes: recursive EQUs, macro abuse.

            I am running it on a Linux machine, with NASM 32 Bit x86 Assembly, which are precisely the parameters used in creating this program according to the user who originally posted that code review.

            I looked up this error and found some, albeit little resources to help. It seems that if a label is pronounced twice in the code, it gets that error. However, I have been searching through this code for hours now and I cannot seem to find any duplicate labels or any reasoning as to why this error would pop up. Additionally, it seems that the users on the site did not bring up this error, indicating that it probably ran fine for them.

            Why is this the case?

            ...

            ANSWER

            Answered 2021-Apr-29 at 02:07

            There are two obvious errors. Line 5 (1-based) should be badNumL equ $-badNum, and line 7 should be gcdL equ $-gcdiv. Once those are fixed, there are a whole slew of other errors and warnings, but it will get you past the original error.

            Source https://stackoverflow.com/questions/67309583

            QUESTION

            Algorithm to find multiple short paths
            Asked 2021-Mar-02 at 18:08

            Seeking an algorithm that will yield N short paths.

            Does anyone have experience with an algorithm to find multiple short paths in a directed graph? My application is for language (finding synonym chains) but logically, this could be for geography, or social networks instead. I want significantly different paths, not just swapping a few nodes along the way. I would really like also if there's a way to avoid "hubs", i.e. huge airports or super-connectors; or in language, words that have a ton of meanings.

            (For my application, I've solved this with Dijkstra's and A-star, but I don't have a good way yet to get multiple paths, other than changing weights after I get the first path.)

            For example (if a social network), how do I find multiple paths that connect ME and YOU, with mostly different people along the way. Chances are with 4-7 points of separation, that's possible. For both language, and social networks, it's often around 6 degrees of separation. i.e. it rarely takes 20+ nodes.

            I've seen Dijkstra's algorithm to find all the shortest paths possible, a variation of shortest path algorithm, What is difference between BFS and Dijkstra's algorithms when looking for shortest path?, Find several shortest paths with A* algorithm -- but none are what I seek.

            Surely someone has figured this out, but I don't know what to search for.

            ...

            ANSWER

            Answered 2021-Mar-02 at 10:06
            Network flows

            This one is better for the social networks case, however it could be bent to include the synonym chains as well. The algorithm I have in mind is the Dinic's since it's augmenting paths are selected to be the shortest available paths. This will allow us to modify the algorithm to suit your case. Also note that we will be working with integer network flows.

            Graph construction:

            • source, sink
            • for every person p, nodes ps, pe and a directed edge (ps, pe) with the capacity of one.1
            • for every edge (u,v) in your original graph a chain of edges (ue, x1), (x1, x2), ... (xk, vs) so that the number of the chain links equals the weight of the (u, v).2 This is to make use of the fact that Dinic finds the shortest improvement to the current flow so this penalizes the longer chains from being used too early.
            • For the person a you want to start with, change the capacity of (xs, xe) to the number of paths you wish to find.3
            • Ad an edge with unlimited capacity from the source to xs
            • Merge your target person with the sink. (Or add the appropriate edges)

            Run the Dinic's algorithm. The resulting flow will consist of the maximal number of disjunct paths. If you terminate the algorithm soon enough, these will likely be quite short since that is what the algorithm starts with. However since the network flow in the graph we constructed attempts to maximize the number of disjunct paths, it will start to prefer the longer ones if it improves the count. That is why you might want to limit the capacity of the first node's edge.

            1Bigger capacities won't work for this case because it would just increase the flow through the shortest path uniformly. However you can try to tweak some of the edges if you wish to allow at least few hubs or if your branching starts later.
            2Note that if you have unweighted graph, then the edge (ue, vs) will be enough.
            3Or infinity if you wish to find all of them. This would likely come with the cost of them no longer being reasonably short.

            Source https://stackoverflow.com/questions/66430545

            Community Discussions, Code Snippets contain sources that include Stack Exchange Network

            Vulnerabilities

            No vulnerabilities reported

            Install dijkstras-algorithm

            You can download it from GitHub.
            You can use dijkstras-algorithm like any standard Java library. Please include the the jar files in your classpath. You can also use any IDE and you can run and debug the dijkstras-algorithm component as you would do with any other Java program. Best practice is to use a build tool that supports dependency management such as Maven or Gradle. For Maven installation, please refer maven.apache.org. For Gradle installation, please refer gradle.org .

            Support

            For any new features, suggestions and bugs create an issue on GitHub. If you have any questions check and ask questions on community page Stack Overflow .
            Find more information at:

            Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items

            Find more libraries
            CLONE
          • HTTPS

            https://github.com/mburst/dijkstras-algorithm.git

          • CLI

            gh repo clone mburst/dijkstras-algorithm

          • sshUrl

            git@github.com:mburst/dijkstras-algorithm.git

          • Stay Updated

            Subscribe to our newsletter for trending solutions and developer bootcamps

            Agree to Sign up and Terms & Conditions

            Share this Page

            share link