pokemon_data | 全ポケモンのJSONデータです。 | Video Game library
kandi X-RAY | pokemon_data Summary
kandi X-RAY | pokemon_data Summary
全ポケモンのJSONデータです。
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of pokemon_data
pokemon_data Key Features
pokemon_data Examples and Code Snippets
Community Discussions
Trending Discussions on pokemon_data
QUESTION
The original .csv file -
...ANSWER
Answered 2021-Aug-09 at 08:57With str()
you can get the string representation of each row, then concatenate them together with .str.cat
:
QUESTION
I was working with the exact same csv-file the tutorial provided. While doing the tutorial i did not encounter the error. when trying to build onto my knowledge i acquired during the tutorial i got the following error, althought i did not change the data in the file, or anything with the code, if you can even call it code. Searched the internet for similar errors, but did not find anything.
The code:
...ANSWER
Answered 2021-Apr-09 at 17:03df.columns
will return an Index like this. You can think of it as a list of the names of the columns:
Index(['Size', 'Speed', 'RPM'], dtype='object')
You could extract an element from the Index, but it would just return a string:
df.columns[1]
would return Speed
.
Probably, what you want is to actually get a column from the dataframe! You could do this with
df['Speed']
or df.Speed
- not by going through the df.columns
attribute.
QUESTION
I loaded a csv and then tried to get the first row with the row index number
...ANSWER
Answered 2021-Jan-06 at 18:36pkm[0]
calls for the column named 0
in pkm
. That's why it's not working.
Try pkm['HP']
or using a column name and it will be clear.
QUESTION
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
df = pd.read_csv('pokemon_data.csv')
df['Total'] = df['HP'] + df['Attack'] + df['Defense'] + df['Sp. Atk'] + df['Sp. Def'] + df['Speed']
df = df.loc[df['Total'] > 450]
df = df.loc[~df['Name'].str.contains('Mega')]
df = df.loc[~df['Name'].str.contains('Primal')]
df = df.drop(columns = ['Name'])
df = df.drop(columns = ['Generation'])
df = df.drop(columns = ['Legendary'])
df = df.drop(columns = ['Type 2'])
df = df.drop(columns = ['#'])
df.loc[df['Type 1'] == 'Fire', 'Type 1'] = 0
df.loc[df['Type 1'] == 'Normal', 'Type 1'] = 1
df.loc[df['Type 1'] == 'Water', 'Type 1'] = 2
df.loc[df['Type 1'] == 'Grass', 'Type 1'] = 3
df.loc[df['Type 1'] == 'Electric', 'Type 1'] = 4
df.loc[df['Type 1'] == 'Ice', 'Type 1'] = 5
df.loc[df['Type 1'] == 'Fighting', 'Type 1'] = 6
df.loc[df['Type 1'] == 'Poison', 'Type 1'] = 7
df.loc[df['Type 1'] == 'Ground', 'Type 1'] = 8
df.loc[df['Type 1'] == 'Flying', 'Type 1'] = 9
df.loc[df['Type 1'] == 'Psychic', 'Type 1'] = 10
df.loc[df['Type 1'] == 'Rock', 'Type 1'] = 11
df.loc[df['Type 1'] == 'Bug', 'Type 1'] = 12
df.loc[df['Type 1'] == 'Ghost', 'Type 1'] = 13
df.loc[df['Type 1'] == 'Dark', 'Type 1'] = 14
df.loc[df['Type 1'] == 'Dragon', 'Type 1'] = 15
df.loc[df['Type 1'] == 'Steel', 'Type 1'] = 16
df.loc[df['Type 1'] == 'Fairy', 'Type 1'] = 17
TEMP = ['Type 1']
for col in TEMP:
df[col] = pd.to_numeric(df[col])
df_eval_sub = df.loc[df['Total'] < 500]
df_eval_over = df.loc[df['Total'] > 500]
y_train = df.pop('Type 1')
y_eval_sub = df_eval_sub.pop('Type 1')
y_eval_over = df_eval_over.pop('Type 1')
feature_columns = []
TO_INT = ['HP', 'Attack', 'Defense', 'Sp. Atk', 'Sp. Def', 'Speed', 'Total']
for col in TO_INT:
df[col] = pd.to_numeric(df[col])
NUMERIC_COLUMNS = ['HP', 'Attack', 'Defense', 'Sp. Atk', 'Sp. Def', 'Speed', 'Total']
for feature_name in NUMERIC_COLUMNS:
feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32))
def make_input_fn(data_df, label_df, num_epochs = 10, shuffle = True, batch_size=32):
def input_function():
ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df))
if shuffle:
ds = ds.shuffle(1000)
ds = ds.batch(batch_size).repeat(num_epochs)
return ds
return input_function
train_input_fn = make_input_fn(df, y_train)
eval_input_fn = make_input_fn(df_eval_sub, y_eval_sub, num_epochs = 1, shuffle = False)
linear_est = tf.estimator.LinearClassifier(feature_columns=feature_columns)
linear_est.train(train_input_fn)
result = linear_est.evaluate(eval_input_fn)
...ANSWER
Answered 2021-Jan-03 at 02:45The n_classes
it's not means the number of columns, it's the parameter in tf.estimator.LinearClassifier that you have to specify, and the classes in your labels must <= n_classes
, in your case you should set linear_est = tf.estimator.LinearClassifier(feature_columns=feature_columns, n_classes=18)
QUESTION
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
df = pd.read_csv('pokemon_data.csv')
df['Total'] = df['HP'] + df['Attack'] + df['Defense'] + df['Sp. Atk'] + df['Sp. Def'] + df['Speed']
df = df.loc[df['Total'] > 450]
df = df.loc[~df['Name'].str.contains('Mega')]
df = df.loc[~df['Name'].str.contains('Primal')]
df = df.drop(columns = ['Name'])
df = df.drop(columns = ['Generation'])
df = df.drop(columns = ['Legendary'])
df = df.drop(columns = ['Type 2'])
df = df.drop(columns = ['#'])
df_eval_sub = df.loc[df['Total'] < 500]
df_eval_over = df.loc[df['Total'] > 500]
y_train = df.pop('Type 1')
y_eval_sub = df_eval_sub.pop('Type 1')
y_eval_over = df_eval_over.pop('Type 1')
feature_columns = []
NUMERIC_COLUMNS = ['HP', 'Attack', 'Defense', 'Sp. Atk', 'Sp. Def', 'Speed', 'Total']
for feature_name in NUMERIC_COLUMNS:
feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32))
def make_input_fn(data_df, label_df, num_epochs = 10, shuffle = True, batch_size=32):
def input_function():
ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df))
if shuffle:
ds = ds.shuffle(1000)
ds = ds.batch(batch_size).repeat(num_epochs)
return ds
return input_function
train_input_fn = make_input_fn(df, y_train)
eval_input_fn = make_input_fn(df_eval_sub, y_eval_sub, num_epochs = 1, shuffle = False)
linear_est = tf.estimator.LinearClassifier(feature_columns=feature_columns)
linear_est.train(train_input_fn)
result = linear_est.evaluate(eval_input_fn)
clear_output()
print(result['accuracy'])
...ANSWER
Answered 2021-Jan-02 at 23:03I can reproduce your error by using a tf.feature_column.numeric_column
on a dataframe column that has string values.
QUESTION
I am really new to pyqt and this question maybe silly. Any help, I would really appreciate. I have this code I get from this page where it codes in filtering a qtablewidget. This code works perfectly fine to my desired filtering output. However I have a table and it has lot of rows, I want the menu bar used in filtering to be scrollable instead of displaying all unique contents in the row. I want to have fixed size height of the menubar.
This is the code:
...ANSWER
Answered 2020-Jun-07 at 15:40The easiest solution is to use an undocumented stylesheet property (as proposed in the unaccepted answer of this post).
QUESTION
I have a problem with dataframes in Python. I am trying to copy certain rows to a new dataframe but I can't figure it out.
There are 2 arrays:
...ANSWER
Answered 2020-Apr-25 at 14:07For this type of wrangling, you should first "melt" or "tidy" the combats_data
so each ID has its own row, then do a "join" or "merge" of the two dataframes.
You didn't provide a minimum reproducible example, so here's mine:
QUESTION
I'm working on a personal project, and I need to delete some rows from my dataframe, and the easiest way I found is to move a column to the position 0, then remove the rows whose 'headline' contain certain values.
...ANSWER
Answered 2020-Mar-29 at 20:09Use:
QUESTION
I just started learning pandas and when I tried to import a data set from a text file I got a Name error and both files in the same folder this is my the code
...ANSWER
Answered 2020-Mar-16 at 16:26You have to write pokemon_data.csv in quotation marks like df = pd.read_csv("pokemon_data.csv")
.
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install pokemon_data
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page