STRIDE | Species Tree Root Inference from Gene Duplication Events | Genomics library
kandi X-RAY | STRIDE Summary
kandi X-RAY | STRIDE Summary
The correct interpretation of a phylogenetic tree is dependent on it being correctly rooted. STRIDE takes an unrooted species tree and a set of unrooted gene trees and identifies well-supported gene duplication events within the gene trees to infer the root of the species tree. A gene duplication event at the base of a clade of species is synapamorphic, and thus excludes the root of the species tree from that clade. STRIDE is a fast, effective, and outgroup-free method for species tree root inference from gene duplication events. On test datasets on a typical 4 core desktop it analysed 14,454 gene trees covering 47 species in ~25s. Test datasets together with a script to run all the datasets can be downloaded from .
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
- Main function
- Creates a new working directory
- Return a set of all nodes in the tree
- Analyze species tree
- Calculate PSD of O_D
- Calculates the log - likelihood of the log - likelihood distribution
- Compute P_O_O_T
- Logfactorial
- R Calculates the PSD for the O_D
- Return the logarithm of the objective function
- Compute the derivative of the polynomial term
STRIDE Key Features
STRIDE Examples and Code Snippets
def _compute_mesh_strides(mesh_dims: List[MeshDimension]) -> List[int]:
strides = [1]
for idx, dim in enumerate(reversed(mesh_dims[1:])):
strides.append(strides[idx] * dim.size)
strides.reverse()
return strides
Community Discussions
Trending Discussions on STRIDE
QUESTION
I have a pyTorch-code to train a model that should be able to detect placeholder-images among product-images. I didn't write the code by myself as I am very unexperienced with CNNs and Machine Learning.
My boss told me to calculate the f1-score for that model and i found out that the formula for that is ((precision * recall)/(precision + recall))
but I don't know how I get precision and recall. Is someone able to tell me how I can get those two parameters from that following code?
(Sorry for the long piece of code, but I didn't really know what is necessary and what isn't)
ANSWER
Answered 2021-Jun-13 at 15:17You can use sklearn to calculate f1_score
QUESTION
I am currently working with vectors and trying to ensure I have what is essentially an array of my vector on the stack. I cannot call Vec::into_boxed_slice
since I am dynamically allocating space in my Vec
. Is this at all possible?
Having read the Rustonomicon on how to implement Vec
, it seems to stride over pointers on the heap, dereferencing at each entry. I want to chunk in Vec
entries from the heap into the stack for fast access.
ANSWER
Answered 2021-Feb-02 at 02:09You can use the unsized_locals
feature in nightly Rust:
QUESTION
I have a dataset of 100000 binary 3D arrays of shape (6, 4, 4) so the shape of my input is (10000, 6, 4, 4). I'm trying to set up a 3D Convolutional Neural Network (CNN) using Keras; however, there seems to be a problem with the input_shape that I enter. My first layer is:
...ANSWER
Answered 2021-Jun-11 at 21:50Example with dummy data:
QUESTION
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from PIL import Image
import matplotlib.pyplot as plt
class Model_Down(nn.Module):
"""
Convolutional (Downsampling) Blocks.
nd = Number of Filters
kd = Kernel size
"""
def __init__(self,in_channels, nd = 128, kd = 3, padding = 1, stride = 2):
super(Model_Down,self).__init__()
self.padder = nn.ReflectionPad2d(padding)
self.conv1 = nn.Conv2d(in_channels = in_channels, out_channels = nd, kernel_size = kd, stride = stride)
self.bn1 = nn.BatchNorm2d(nd)
self.conv2 = nn.Conv2d(in_channels = nd, out_channels = nd, kernel_size = kd, stride = 1)
self.bn2 = nn.BatchNorm2d(nd)
self.relu = nn.LeakyReLU()
def forward(self, x):
x = self.padder(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.padder(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
return x
...ANSWER
Answered 2021-Jun-11 at 17:50Here is a functional equivalent of the main Model forward(x)
method. It is much more verbose, but it is "unravelling" the flow of operations, making it more easily understandable.
I assumed that the length of the list-arguments are always 5
(i is in the [0, 4] range, inclusive) so I could unpack properly (and it follows the default set of parameters).
QUESTION
I have created and trained one very simple network in pytorch as shown below:
...ANSWER
Answered 2021-Jun-11 at 09:55I suspect this is due to you not having set the model to inference mode with
QUESTION
import torch
import torch.nn as nn
import torch.nn.functional as F
class double_conv(nn.Module):
'''(conv => BN => ReLU) * 2'''
def __init__(self, in_ch, out_ch):
super(double_conv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.conv(x)
return x
class inconv(nn.Module):
def __init__(self, in_ch, out_ch):
super(inconv, self).__init__()
self.conv = double_conv(in_ch, out_ch)
def forward(self, x):
x = self.conv(x)
return x
class down(nn.Module):
def __init__(self, in_ch, out_ch):
super(down, self).__init__()
self.mpconv = nn.Sequential(
nn.MaxPool2d(2),
double_conv(in_ch, out_ch)
)
def forward(self, x):
x = self.mpconv(x)
return x
class up(nn.Module):
def __init__(self, in_ch, out_ch, bilinear=True):
super(up, self).__init__()
# would be a nice idea if the upsampling could be learned too,
# but my machine do not have enough memory to handle all those weights
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
else:
self.up = nn.ConvTranspose2d(in_ch//2, in_ch//2, 2, stride=2)
self.conv = double_conv(in_ch, out_ch)
def forward(self, x1, x2):
x1 = self.up(x1)
diffX = x1.size()[2] - x2.size()[2]
diffY = x1.size()[3] - x2.size()[3]
x2 = F.pad(x2, (diffX // 2, int(diffX / 2),
diffY // 2, int(diffY / 2)))
x = torch.cat([x2, x1], dim=1)
x = self.conv(x)
return x
class outconv(nn.Module):
def __init__(self, in_ch, out_ch):
super(outconv, self).__init__()
self.conv = nn.Conv2d(in_ch, out_ch, 1)
def forward(self, x):
x = self.conv(x)
return x
class UNet(nn.Module):
def __init__(self, n_channels, n_classes):
super(UNet, self).__init__()
self.inc = inconv(n_channels, 64)
self.down1 = down(64, 128)
self.down2 = down(128, 256)
self.down3 = down(256, 512)
self.down4 = down(512, 512)
self.up1 = up(1024, 256)
self.up2 = up(512, 128)
self.up3 = up(256, 64)
self.up4 = up(128, 64)
self.outc = outconv(64, n_classes)
def forward(self, x):
self.x1 = self.inc(x)
self.x2 = self.down1(self.x1)
self.x3 = self.down2(self.x2)
self.x4 = self.down3(self.x3)
self.x5 = self.down4(self.x4)
self.x6 = self.up1(self.x5, self.x4)
self.x7 = self.up2(self.x6, self.x3)
self.x8 = self.up3(self.x7, self.x2)
self.x9 = self.up4(self.x8, self.x1)
self.y = self.outc(self.x9)
return self.y
...ANSWER
Answered 2021-Jun-11 at 09:42Does n_classes signify multiclass segmentation?
Yes, if you specify n_classes=4
it will output a (batch, 4, width, height)
shaped tensor, where each pixel can be segmented as one of 4
classes. Also one should use torch.nn.CrossEntropyLoss
for training.
If so, what is the output of binary UNet segmentation?
If you want to use binary segmentation you'd specify n_classes=1
(either 0
for black or 1
for white) and use torch.nn.BCEWithLogitsLoss
I am trying to use this code for image denoising and I couldn't figure out what will should the n_classes parameter be
It should be equal to n_channels
, usually 3
for RGB or 1
for grayscale. If you want to teach this model to denoise an image you should:
- Add some noise to the image (e.g. using
torchvision.transforms
) - Use
sigmoid
activation at the end as the pixels will have value between0
and1
(unless normalized) - Use
torch.nn.MSELoss
for training
Because [0,255]
pixel range is represented as [0, 1]
pixel value (without normalization at least). sigmoid
does exactly that - squashes value into [0, 1]
range, hence linear
outputs (logits) can have a range from -inf
to +inf
.
Why not a linear output and a clamp?
In order for the Linear layer to be in [0, 1]
range after clamp possible output values from Linear would have to be greater than 0
(logits range to fit the target: [0, +inf]
)
Why not a linear output without a clamp?
Logits outputted would have to be within [0, 1]
range
Why not some other method?
You could do that, but the idea of sigmoid
is:
- help neural network (any logit value can be outputted)
- first derivative of
sigmoid
is gaussian standard normal, hence it models the probability of many real-life occurring phenomena (see also here for more)
QUESTION
I am trying to define a model happyModel()
...ANSWER
Answered 2021-May-25 at 18:51In your model definition, there's an issue with the following layer:
QUESTION
I am trying to implement GoogleNet inception network to classify images for classification project that I am working on, I used the same code before but with AlexNet network and the training was fine, but once I changed the network to GoogleNet architecture the code kept throwing the following error:
...ANSWER
Answered 2021-Jun-08 at 08:22GoogleNet is different than Alexnet, in GoogleNet your model has 3 outputs, 1 main and 2 auxiliary outputs connected in intermediate layers during training:
QUESTION
I have modified VGG16 in pytorch to insert things like BN and dropout within the feature extractor. By chance I now noticed something strange when I changed the definition of the forward method from:
...ANSWER
Answered 2021-Jun-07 at 14:13I can't run your code, but I believe the issue is because linear layers expect 2d data input (as it is really a matrix multiplication), while you provide 4d input (with dims 2 and 3 of size 1).
Please try squeeze
QUESTION
As I try to covert my yolov4-tiny custom weight to tftile, it always happen.
This is what I input:
...ANSWER
Answered 2021-Jun-06 at 14:03You have to add --tiny
to the command. Which, from the command you gave in the question, will be.
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install STRIDE
You can use STRIDE like any standard Python library. You will need to make sure that you have a development environment consisting of a Python distribution including header files, a compiler, pip, and git installed. Make sure that your pip, setuptools, and wheel are up to date. When using pip it is generally recommended to install packages in a virtual environment to avoid changes to the system.
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page