ShadowImageView | A apple music cover picture shadow style image library | iOS library
kandi X-RAY | ShadowImageView Summary
kandi X-RAY | ShadowImageView Summary
A apple music cover picture shadow style image library. ShadowImageView is a iOS 10 Apple Music style image view, help you create elegent image with shadow.
Support
Quality
Security
License
Reuse
Top functions reviewed by kandi - BETA
Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of ShadowImageView
ShadowImageView Key Features
ShadowImageView Examples and Code Snippets
Community Discussions
Trending Discussions on ShadowImageView
QUESTION
I am using a custom view on this layout. There is no error/exception occurs when run in debug mode. But when I generate a signed APK and try to run the app, the following exception occurs.
Exception:
...ANSWER
Answered 2020-Sep-30 at 12:56Nevermind, found a solution by changing this,
QUESTION
So I have created this UIButton Sub-class. It's a reusable component and can be added in any view controller. I need to present an alert view controller with the tap in the button. So basically I need to find out in which view controller the button lies so I can pass a view controller as a parameter.
...ANSWER
Answered 2020-Jun-17 at 08:39You could add a weak var
reference to the controller inside your UIButton
. Better way would be add the handler function in the UIViewController
extension and addTarget
in the viewDidLoad
instead of the UIButton's init(frame:)
. Here's an example:
QUESTION
ANSWER
Answered 2020-Feb-02 at 23:37I was able to get this very easily:
That seems to be the sort of thing you're after.
The double shadow stems from the fact that in a graphics context, shadow drawing is a state applied to any future drawing. So if you set the context's shadow to be down-and-to-the-left and draw the symbol image, and then set the context's shadow to be down-and-to-the-right and draw the symbol image, you get the double shadow.
It is true that the symbol image itself is drawn twice but that does not necessarily change the way it appears; if I hadn't told you I'd drawn it twice, I don't think you'd have known.
QUESTION
void VEngine::initVulkan() {
createInstance();
setupDebugCallback();
createSurface();
pickPhysicalDevice();
createLogicalDevice();
createSemaphores();
createSwapChain();
createImageViews();
createCommandPool();
createRenderPass();
createFramebuffers();
CreateShadowRenderPass();
CreateShadowFrameBuffer();
createDescriptorSetLayout();
createGraphicsPipeline();
SetTextureInfo();
createVertexBuffer();
createIndexBuffer();
createUniformBuffer();
createDescriptorPool();
createDescriptorSet();
CreateCommandBuffers();
CreateShadowLayout();
CreateShadowPipeline();
CreateShadowVertexBuffer();
CreateShadowIndexBuffer();
CreateShadowUniformBuffer();
CreateShadowDescriptorPool();
CreateShadowDescriptorSet();
CreateShadowCommandBuffer();
}
void VEngine::CreateCommandBuffers()
{
commandBuffers.resize(swapChainFramebuffers.size());
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = commandPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = (uint32_t)commandBuffers.size();
if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) != VK_SUCCESS) {
throw std::runtime_error("failed to allocate command buffers!");
}
for (size_t i = 0; i < commandBuffers.size(); i++) {
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
vkBeginCommandBuffer(commandBuffers[i], &beginInfo);
VkRenderPassBeginInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassInfo.renderPass = renderPass;
renderPassInfo.framebuffer = swapChainFramebuffers[i];
renderPassInfo.renderArea.offset = { 0, 0 };
renderPassInfo.renderArea.extent = swapChainExtent;
std::array clearValues = {};
clearValues[0].color = { 0.2f, 0.2f, 0.2f, 1.0f };
clearValues[1].depthStencil = { 1.0f, 0 };
renderPassInfo.clearValueCount = static_cast(clearValues.size());
renderPassInfo.pClearValues = clearValues.data();
vkCmdBeginRenderPass(commandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);
VkBuffer vertexBuffers[] = { vertexBuffer };
VkDeviceSize offsets[] = { 0 };
vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets);
vkCmdBindIndexBuffer(commandBuffers[i], indexBuffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
glm::mat4 model = glm::mat4(1.0f);
vkCmdPushConstants(commandBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(ConstantMatrixModel), &model);
vkCmdDrawIndexed(commandBuffers[i], static_cast(indices.size()), 1, 0, 0, 0);
vkCmdEndRenderPass(commandBuffers[i]);
if (vkEndCommandBuffer(commandBuffers[i]) != VK_SUCCESS) {
throw std::runtime_error("failed to record command buffer!");
}
}
}
void VEngine::drawFrame() {
uint32_t imageIndex;
VkResult result = vkAcquireNextImageKHR(device, swapChain, std::numeric_limits::max(), imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex);
/* if (result == VK_ERROR_OUT_OF_DATE_KHR) {
recreateSwapChain();
return;
}
else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
throw std::runtime_error("failed to acquire swap chain image!");
}*/
VkSubmitInfo shadowSubmitInfo = {};
shadowSubmitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
VkPipelineStageFlags shadowWaitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };
shadowSubmitInfo.waitSemaphoreCount = 1;
shadowSubmitInfo.pWaitSemaphores = &imageAvailableSemaphore;
shadowSubmitInfo.pWaitDstStageMask = shadowWaitStages;
shadowSubmitInfo.signalSemaphoreCount = 1;
shadowSubmitInfo.pSignalSemaphores = &shadowSemaphore;
shadowSubmitInfo.pCommandBuffers = &shadowCommandbuffer;
VK_CHECK_RESULT(vkQueueSubmit(presentQueue, 1, &shadowSubmitInfo, VK_NULL_HANDLE));
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_ALL_COMMANDS_BIT };
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &shadowSemaphore;
submitInfo.pWaitDstStageMask = waitStages;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffers[imageIndex];
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &renderFinishedSemaphore;
VK_CHECK_RESULT(vkQueueSubmit(presentQueue, 1, &submitInfo, VK_NULL_HANDLE));
VkPresentInfoKHR presentInfo = {};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = &renderFinishedSemaphore;
VkSwapchainKHR swapChains[] = { swapChain };
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = swapChains;
presentInfo.pImageIndices = &imageIndex;
VK_CHECK_RESULT(vkQueuePresentKHR(presentQueue, &presentInfo));
//if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) {
// recreateSwapChain();
//}
//else if (result != VK_SUCCESS) {
// throw std::runtime_error("failed to present swap chain image!");
//}
VK_CHECK_RESULT(vkQueueWaitIdle(presentQueue));
}
void VEngine::CreateShadowFrameBuffer()
{
// For shadow mapping we only need a depth attachment
VkImageCreateInfo image = {};
image.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image.imageType = VK_IMAGE_TYPE_2D;
image.extent.width = shadow_width;
image.extent.height = shadow_height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.format = DEPTH_FORMAT; // Depth stencil attachment
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; // We will sample directly from the depth attachment for the shadow mapping
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &shadowImage));
VkMemoryAllocateInfo memAlloc = {};
VkMemoryRequirements memReqs = {};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
vkGetImageMemoryRequirements(device, shadowImage, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = findMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &shadowImageMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, shadowImage, shadowImageMemory, 0));
VkImageViewCreateInfo depthStencilView = {};
depthStencilView.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = DEPTH_FORMAT;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
depthStencilView.image = shadowImage;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &shadowImageView));
// Create sampler to sample from to depth attachment
// Used to sample in the fragment shader for shadowed rendering
VkSamplerCreateInfo sampler = {};
sampler.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sampler.magFilter = SHADOWMAP_FILTER;
sampler.minFilter = SHADOWMAP_FILTER;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &shadowImageSampler));
// Create frame buffer
VkFramebufferCreateInfo fbufCreateInfo = {};
fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbufCreateInfo.renderPass = shadowRenderPass;
fbufCreateInfo.attachmentCount = 1;
fbufCreateInfo.pAttachments = &shadowImageView;
fbufCreateInfo.width = shadow_width;
fbufCreateInfo.height = shadow_height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &shadowFramebuffers));
}
void VEngine::CreateShadowRenderPass()
{
VkAttachmentDescription attachmentDescription = {};
attachmentDescription.format = DEPTH_FORMAT;
attachmentDescription.samples = VK_SAMPLE_COUNT_1_BIT;
attachmentDescription.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear depth at beginning of the render pass
attachmentDescription.storeOp = VK_ATTACHMENT_STORE_OP_STORE; // We will read from depth, so it's important to store the depth attachment results
attachmentDescription.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachmentDescription.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachmentDescription.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // We don't care about initial layout of the attachment
attachmentDescription.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;// Attachment will be transitioned to shader read at render pass end
VkAttachmentReference depthReference = {};
depthReference.attachment = 0;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Attachment will be used as depth/stencil during render pass
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 0; // No color attachments
subpass.pDepthStencilAttachment = &depthReference; // Reference to our depth attachment
// Use subpass dependencies for layout transitions
std::array dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassCreateInfo = {};
renderPassCreateInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassCreateInfo.attachmentCount = 1;
renderPassCreateInfo.pAttachments = &attachmentDescription;
renderPassCreateInfo.subpassCount = 1;
renderPassCreateInfo.pSubpasses = &subpass;
renderPassCreateInfo.dependencyCount = static_cast(dependencies.size());
renderPassCreateInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &shadowRenderPass));
}
void VEngine::CreateShadowLayout()
{
std::vector setLayoutBindings;
VkDescriptorSetLayoutBinding ubo{
0,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
1,
VK_SHADER_STAGE_VERTEX_BIT,
nullptr
};
setLayoutBindings.push_back(ubo);
VkDescriptorSetLayoutCreateInfo descriptorLayout = {};
descriptorLayout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorLayout.bindingCount = static_cast(setLayoutBindings.size());
descriptorLayout.pBindings = setLayoutBindings.data();
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &shadowDescriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {};
pPipelineLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pPipelineLayoutCreateInfo.setLayoutCount = 1;
pPipelineLayoutCreateInfo.pSetLayouts = &shadowDescriptorSetLayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &shadowPipelineLayout));
}
void VEngine::CreateShadowVertexBuffer()
{
VkDeviceSize bufferSize = sizeof(shadowVertices[0]) * shadowVertices.size();
VkBuffer stagingBuffer;
VkDeviceMemory stagingBufferMemory;
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);
void* data;
VK_CHECK_RESULT(vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data));
memcpy(data, shadowVertices.data(), (size_t)bufferSize);
vkUnmapMemory(device, stagingBufferMemory);
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, shadowVertexBuffer, shadowVertexBufferMemory);
copyBuffer(stagingBuffer, shadowVertexBuffer, bufferSize);
vkDestroyBuffer(device, stagingBuffer, nullptr);
vkFreeMemory(device, stagingBufferMemory, nullptr);
}
void VEngine::CreateShadowIndexBuffer()
{
VkDeviceSize bufferSize = sizeof(shadowIndices[0]) * shadowIndices.size();
VkBuffer stagingBuffer;
VkDeviceMemory stagingBufferMemory;
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);
void* data;
VK_CHECK_RESULT(vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data));
memcpy(data, shadowIndices.data(), (size_t)bufferSize);
vkUnmapMemory(device, stagingBufferMemory);
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, shadowIndexBuffer, shadowIndexBufferMemory);
copyBuffer(stagingBuffer, shadowIndexBuffer, bufferSize);
vkDestroyBuffer(device, stagingBuffer, nullptr);
vkFreeMemory(device, stagingBufferMemory, nullptr);
}
void VEngine::CreateShadowUniformBuffer()
{
createBuffer(sizeof(ShadowUBO), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, shadowUniformBuffer, shadowUniformBufferMemory);
UpdateShadowUniformBuffer();
}
void VEngine::CreateShadowDescriptorPool()
{
std::array poolSizes = {};
poolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
poolSizes[0].descriptorCount = 1;
VkDescriptorPoolCreateInfo poolInfo = {};
poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
poolInfo.poolSizeCount = static_cast(poolSizes.size());
poolInfo.pPoolSizes = poolSizes.data();
poolInfo.maxSets = 1;
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &poolInfo, nullptr, &shadowDescriptorPool));
}
void VEngine::CreateShadowDescriptorSet()
{
VkDescriptorSetLayout layouts[] = { shadowDescriptorSetLayout };
VkDescriptorSetAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = shadowDescriptorPool;
allocInfo.descriptorSetCount = 1;
allocInfo.pSetLayouts = layouts;
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &shadowDescriptorSet));
VkDescriptorBufferInfo matrixBufferInfo = {};
matrixBufferInfo.buffer = shadowUniformBuffer;
matrixBufferInfo.offset = 0;
matrixBufferInfo.range = sizeof(ShadowUBO);
std::array descriptorWrites = {};
descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrites[0].dstSet = shadowDescriptorSet;
descriptorWrites[0].dstBinding = 0;
descriptorWrites[0].dstArrayElement = 0;
descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorWrites[0].descriptorCount = 1;
descriptorWrites[0].pBufferInfo = &matrixBufferInfo;
vkUpdateDescriptorSets(device, static_cast(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr);
}
void VEngine::CreateShadowPipeline()
{
auto vertShaderCode = readFile("D:/project/vulkan_engine/media/shaders/shadow/offscreen.vert.spv");
auto fragShaderCode = readFile("D:/project/vulkan_engine/media/shaders/shadow/offscreen.frag.spv");
VkShaderModule shadowVertShaderModule = createShaderModule(vertShaderCode);
VkShaderModule shadowFragShaderModule = createShaderModule(fragShaderCode);
VkPipelineShaderStageCreateInfo vertShaderStageInfo = {};
vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
vertShaderStageInfo.module = shadowVertShaderModule;
vertShaderStageInfo.pName = "main";
VkPipelineShaderStageCreateInfo fragShaderStageInfo = {};
fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
fragShaderStageInfo.module = shadowFragShaderModule;
fragShaderStageInfo.pName = "main";
VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo, fragShaderStageInfo };
VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
auto bindingDescription = ShadowVertex::getBindingDescription();
auto attributeDescriptions = ShadowVertex::getAttributeDescriptions();
vertexInputInfo.vertexBindingDescriptionCount = 1;
vertexInputInfo.vertexAttributeDescriptionCount = 1;
vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data();
VkPipelineInputAssemblyStateCreateInfo inputAssembly = {};
inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
inputAssembly.primitiveRestartEnable = VK_FALSE;
VkPipelineViewportStateCreateInfo viewportState = {};
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportState.viewportCount = 1;
viewportState.scissorCount = 1;
VkPipelineRasterizationStateCreateInfo rasterizer = {};
rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterizer.depthClampEnable = VK_FALSE;
rasterizer.rasterizerDiscardEnable = VK_FALSE;
rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
rasterizer.lineWidth = 1.0f;
rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterizer.depthBiasEnable = VK_TRUE;
VkPipelineMultisampleStateCreateInfo multisampling = {};
multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampling.sampleShadingEnable = VK_FALSE;
multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
VkPipelineDepthStencilStateCreateInfo depthStencil = {};
depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencil.depthTestEnable = VK_TRUE;
depthStencil.depthWriteEnable = VK_TRUE;
depthStencil.depthCompareOp = VK_COMPARE_OP_LESS;
depthStencil.depthBoundsTestEnable = VK_FALSE;
depthStencil.stencilTestEnable = VK_FALSE;
VkPipelineColorBlendStateCreateInfo colorBlending = {};
colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlending.attachmentCount = 0;
std::vector dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_DEPTH_BIAS
};
VkPipelineDynamicStateCreateInfo dynamicState = {};
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.dynamicStateCount = dynamicStateEnables.size();
dynamicState.pDynamicStates = dynamicStateEnables.data();
VkGraphicsPipelineCreateInfo pipelineInfo = {};
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineInfo.stageCount = 2;
pipelineInfo.pStages = shaderStages;
pipelineInfo.pVertexInputState = &vertexInputInfo;
pipelineInfo.pInputAssemblyState = &inputAssembly;
pipelineInfo.pViewportState = &viewportState;
pipelineInfo.pRasterizationState = &rasterizer;
pipelineInfo.pMultisampleState = &multisampling;
pipelineInfo.pDepthStencilState = &depthStencil;
pipelineInfo.pColorBlendState = &colorBlending;
pipelineInfo.layout = shadowPipelineLayout;
pipelineInfo.renderPass = shadowRenderPass;
pipelineInfo.pDynamicState = &dynamicState;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &shadowPipeline));
vkDestroyShaderModule(device, shadowFragShaderModule, nullptr);
vkDestroyShaderModule(device, shadowVertShaderModule, nullptr);
}
void VEngine::CreateShadowCommandBuffer()
{
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = commandPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = 1;
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &allocInfo, &shadowCommandbuffer));
VkCommandBufferBeginInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
VkClearValue clearValues[1];
clearValues[0].color = {1.0, 0.0, 0.0, 1.0};
clearValues[0].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = {};
renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassBeginInfo.renderPass = shadowRenderPass;
renderPassBeginInfo.framebuffer = shadowFramebuffers;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = shadow_width;
renderPassBeginInfo.renderArea.extent.height = shadow_height;
renderPassBeginInfo.clearValueCount = 1;
renderPassBeginInfo.pClearValues = clearValues;
VK_CHECK_RESULT(vkBeginCommandBuffer(shadowCommandbuffer, &cmdBufInfo));
VkViewport viewport = {};
viewport.width = shadow_width;
viewport.height = shadow_height;
viewport.minDepth = 0;
viewport.maxDepth = 1;
vkCmdSetViewport(shadowCommandbuffer, 0, 1, &viewport);
VkRect2D scissor = {};
scissor.offset.x = 0;
scissor.offset.y = 0;
scissor.extent.width = shadow_width;
scissor.extent.height = shadow_height;
vkCmdSetScissor(shadowCommandbuffer, 0, 1, &scissor);
// Set depth bias (aka "Polygon offset")
// Required to avoid shadow mapping artefacts
vkCmdSetDepthBias(
shadowCommandbuffer,
1.25f,
0.0f,
1.75f);
vkCmdBeginRenderPass(shadowCommandbuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(shadowCommandbuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, shadowPipeline);
vkCmdBindDescriptorSets(shadowCommandbuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, shadowPipelineLayout, 0, 1, &shadowDescriptorSet, 0, NULL);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(shadowCommandbuffer, 0, 1, &shadowVertexBuffer, offsets);
vkCmdBindIndexBuffer(shadowCommandbuffer, shadowIndexBuffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(shadowCommandbuffer, static_cast(indices.size()), 1, 0, 0, 0);
vkCmdEndRenderPass(shadowCommandbuffer);
VK_CHECK_RESULT(vkEndCommandBuffer(shadowCommandbuffer));
}
void VEngine::UpdateShadowUniformBuffer()
{
void* uboData;
VK_CHECK_RESULT(vkMapMemory(device, shadowUniformBufferMemory, 0, sizeof(ShadowUBO), 0, &uboData));
memcpy(uboData, &ubo.depthMVP, sizeof(ShadowUBO));
vkUnmapMemory(device, shadowUniformBufferMemory);
}
...ANSWER
Answered 2018-Apr-30 at 14:19In VEngine::drawFrame
you create two VkSubmitInfo
structures, which are initialised to 0 with VkSubmitInfo ... = {}
.
For the submitInfo
you set both .commandBufferCount
to 1
and .pCommandBuffers
to the command buffer you want to submit, but in shadowSubmitInfo
you only set .pCommandBuffers
, which leaves .commandBufferCount
as the value 0
- meaning no command buffers are submitted.
If you set shadowSubmitInfo.commandBufferCount
to 1
then it should work better (although I can't say if there are any other problems).
Community Discussions, Code Snippets contain sources that include Stack Exchange Network
Vulnerabilities
No vulnerabilities reported
Install ShadowImageView
Support
Reuse Trending Solutions
Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items
Find more librariesStay Updated
Subscribe to our newsletter for trending solutions and developer bootcamps
Share this Page